Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 23(3): 899-908, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29669293

RESUMEN

Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D) artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs) from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Ingeniería de Tejidos , Diferenciación Celular , Linaje de la Célula , Humanos , Hidrogeles/química , Desarrollo de Músculos , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Andamios del Tejido/química
2.
Biomed Res Int ; 2014: 964010, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25054157

RESUMEN

Treating muscle disorders poses several challenges to the rapidly evolving field of regenerative medicine. Considerable progress has been made in isolating, characterizing, and expanding myogenic stem cells and, although we are now envisaging strategies to generate very large numbers of transplantable cells (e.g., by differentiating induced pluripotent stem cells), limitations directly linked to the interaction between transplanted cells and the host will continue to hamper a successful outcome. Among these limitations, host inflammatory and immune responses challenge the critical phases after cell delivery, including engraftment, migration, and differentiation. Therefore, it is key to study the mechanisms and dynamics that impair the efficacy of cell transplants in order to develop strategies that can ultimately improve the outcome of allogeneic and autologous stem cell therapies, in particular for severe disease such as muscular dystrophies. In this review we provide an overview of the main players and issues involved in this process and discuss potential approaches that might be beneficial for future regenerative therapies of skeletal muscle.


Asunto(s)
Músculo Esquelético/fisiología , Distrofias Musculares/fisiopatología , Distrofias Musculares/terapia , Medicina Regenerativa/métodos , Trasplante de Células Madre , Células Madre/citología , Animales , Diferenciación Celular , Movimiento Celular , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Humanos , Sistema Inmunológico , Inflamación , Regeneración
3.
Stem Cells ; 29(11): 1684-95, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21898693

RESUMEN

Induced pluripotent stem cell (iPSC) technology has provided researchers with a unique tool to derive disease-specific stem cells for the study and possible treatment of degenerative disorders with autologous cells. The low efficiency and heterogeneous nature of reprogramming is a major impediment to the generation of personalized iPSC lines. Here, we report the generation of a lentiviral system based on a microRNA-regulated transgene that enables for the efficient selection of mouse and human pluripotent cells. This system relies on the differential expression pattern of the mature form of microRNA let7a in pluripotent versus committed or differentiated cells. We generated microRNA responsive green fluorescent protein and Neo reporters for specific labeling and active selection of the pluripotent cells in any culture condition. We used this system to establish Rett syndrome and Parkinson's disease human iPSCs. The presented selection procedure represents a straightforward and powerful tool for facilitating the derivation of patient-specific iPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/genética , Animales , Línea Celular , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Humanos , Lentivirus/genética , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA