Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Front Pharmacol ; 15: 1397639, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895619

RESUMEN

Breast cancer is among the most prevalent tumors worldwide. In this study, in-situ forming implants (ISFIs) containing rosuvastatin calcium were prepared using three types of poly (D, L-lactic-co-glycolic acid) (PLGA), namely, PLGA 50/50 with ester terminal and PLGA 75/25 with ester or acid terminal. Additionally, polydimethylsiloxane (PDMS) was added in concentrations of 0, 10, 20, and 30% w/v to accelerate matrix formation. The prepared ISFIs were characterized for their rheological behaviors, rate of matrix formation, and in-vitro drug release. All the prepared formulations revealed a Newtonian flow with a matrix formation rate between 0.017 and 0.059 mm/min. Generally, increasing the concentration of PDMS increased the matrix formation rate. The prepared implants' release efficiency values ranged between 46.39 and 89.75%. The ISFI containing PLGA 50/50 with 30% PDMS was selected for further testing, as it has the highest matrix formation rate and a promising release efficiency value. Copper-selenium nanoparticles were prepared with two different particle sizes (560 and 383 nm for CS1 and CS2, respectively) and loaded into the selected formulation to enhance its anticancer activity. The unloaded and loaded implants with rosuvastatin and copper-selenium nanoparticles were evaluated for their antibacterial activity, against Gram-positive and negative microorganisms, and anticancer efficacy, against MCF-7 and MDA-MB-231 cell lines. The results confirmed the potency of rosuvastatin calcium against cancer cells and the synergistic effect when loaded with smaller particle sizes of copper-selenium nanoparticles. This formulation holds a considerable potential for efficient breast cancer therapy.

2.
Pharmaceutics ; 15(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37514176

RESUMEN

Skin wound healing is one of the most challenging processes for skin reconstruction, especially after severe injuries. In our study, nanofiber membranes were prepared for wound healing using an electrospinning process, where the prepared nanofibers were made of different weight ratios of polycaprolactone and bioactive glass that can induce the growth of new tissue. The membranes showed smooth and uniform nanofibers with an average diameter of 118 nm. FTIR and XRD results indicated no chemical interactions of polycaprolactone and bioactive glass and an increase in polycaprolactone crystallinity by the incorporation of bioactive glass nanoparticles. Nanofibers containing 5% w/w of bioactive glass were selected to be loaded with atorvastatin, considering their best mechanical properties compared to the other prepared nanofibers (3, 10, and 20% w/w bioactive glass). Atorvastatin can speed up the tissue healing process, and it was loaded into the selected nanofibers using a dip-coating technique with ethyl cellulose as a coating polymer. The study of the in vitro drug release found that atorvastatin-loaded nanofibers with a 10% coating polymer revealed gradual drug release compared to the non-coated nanofibers and nanofibers coated with 5% ethyl cellulose. Integration of atorvastatin and bioactive glass with polycaprolactone nanofibers showed superior wound closure results in the human skin fibroblast cell line. The results from this study highlight the ability of polycaprolactone-bioactive glass-based fibers loaded with atorvastatin to stimulate skin wound healing.

3.
Drug Deliv ; 30(1): 51-63, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36474425

RESUMEN

Sugarcane bagasse-derived nanofibrillated cellulose (NFC), a type of cellulose with a fibrous structure, is potentially used in the pharmaceutical field. Regeneration of this cellulose using a green process offers a more accessible and less ordered cellulose II structure (amorphous cellulose; AmC). Furthermore, the preparation of cross-linked cellulose (NFC/AmC) provides a dual advantage by building a structural block that could exhibit distinct mechanical properties. 3D aerogel scaffolds loaded with risedronate were prepared in our study using NFC or cross-linked cellulose (NFC/AmC), then combined with different concentrations of chitosan. Results proved that the aerogel scaffolds composed of NFC and chitosan had significantly improved the mechanical properties and retarded drug release compared to all other fabricated aerogel scaffolds. The aerogel scaffolds containing the highest concentration of chitosan (SC-T3) attained the highest compressive strength and mean release time values (415 ± 41.80 kPa and 2.61 ± 0.23 h, respectively). Scanning electron microscope images proved the uniform highly porous microstructure of SC-T3 with interconnectedness. All the tested medicated as well as unmedicated aerogel scaffolds had the ability to regenerate bone as assessed using the MG-63 cell line, with the former attaining a higher effect than the latter. However, SC-T3 aerogel scaffolds possessed a lower regenerative effect than those composed of NFC only. This study highlights the promising approach of the use of biopolymers derived from agro-wastes for tissue engineering.


Asunto(s)
Quitosano , Saccharum , Ácido Risedrónico , Celulosa , Regeneración Ósea
4.
Cancers (Basel) ; 14(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35804809

RESUMEN

Early detection of hepatocellular carcinoma (HCC) will reduce morbidity and mortality rates of this widely spread disease. Dysregulation in microRNA (miRNA) expression is associated with HCC progression. The objective is to identify a panel of differentially expressed miRNAs (DE-miRNAs) to enhance HCC early prediction in hepatitis C virus (HCV) infected patients. Candidate miRNAs were selected using a bioinformatic analysis of microarray and RNA-sequencing datasets, resulting in nine DE-miRNAs (miR-142, miR-150, miR-183, miR-199a, miR-215, miR-217, miR-224, miR-424, and miR-3607). Their expressions were validated in the serum of 44 healthy individuals, 62 non-cirrhotic HCV patients, 67 cirrhotic-HCV, and 72 HCV-associated-HCC patients using real-time PCR (qPCR). There was a significant increase in serum concentrations of the nine-candidate miRNAs in HCC and HCV patients relative to healthy individuals. MiR-424, miR-199a, miR-142, and miR-224 expressions were significantly altered in HCC compared to non-cirrhotic patients. A panel of five miRNAs improved sensitivity and specificity of HCC detection to 100% and 95.12% relative to healthy controls. Distinguishing HCC from HCV-treated patients was achieved by 70.8% sensitivity and 61.9% specificity using the combined panel, compared to alpha-fetoprotein (51.4% sensitivity and 60.67% specificity). These preliminary data show that the novel miRNAs panel (miR-150, miR-199a, miR-224, miR-424, and miR-3607) could serve as a potential non-invasive biomarker for HCC early prediction in chronic HCV patients. Further prospective studies on a larger cohort of patients should be conducted to assess the potential prognostic ability of the miRNAs panel.

5.
Drug Deliv ; 29(1): 1549-1570, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35612293

RESUMEN

Microfluidics is used to manipulate fluid flow in micro-channels to fabricate drug delivery vesicles in a uniform tunable size. Thanks to their designs, microfluidic technology provides an alternative and versatile platform over traditional formulation methods of nanoparticles. Understanding the factors that affect the formulation of nanoparticles can guide the proper selection of microfluidic design and the operating parameters aiming at producing nanoparticles with reproducible properties. This review introduces the microfluidic systems' continuous flow (single-phase) and segmented flow (multiphase) and their different mixing parameters and mechanisms. Furthermore, microfluidic approaches for efficient production of nanoparticles as surface modification, anti-fouling, and post-microfluidic treatment are summarized. The review sheds light on the used microfluidic systems and operation parameters applied to prepare and fine-tune nanoparticles like lipid, poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles as well as cross-linked nanoparticles. The approaches for scale-up production using microfluidics for clinical or industrial use are also highlighted. Furthermore, the use of microfluidics in preparing novel micro/nanofluidic drug delivery systems is presented. In conclusion, the characteristic vital features of microfluidics offer the ability to develop precise and efficient drug delivery nanoparticles.


Asunto(s)
Microfluídica , Nanopartículas , Tecnología Farmacéutica
6.
Int J Pharm ; 616: 121549, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35131357

RESUMEN

Recycling of agro-wastes presents a great economic and ecologic value. In this study, TEMPO-oxidized nanofibrillated cellulose (TONFC) originating from sugarcane bagasse pulp was exploited in regenerative medicine. TONFC in combination with glucosamine HCl (G) were used to prepare a 3D aerogel implant loaded with rosuvastatin as an integrative approach for extraction-socket healing. Comparing the prepared devices, aerogel composed of TONFC: G (4:1 wt ratio) had the best mechanical properties and integrity. Strontium borate-based bioactive ceramic particles were prepared and characterized for crystal structure, shape, porosity, and zeta potential. The particles had a crystalline diffraction pattern relative to Sr3B2O6, and they were rod in shape with nanopores with a zeta potential value of -16 mV. The prepared bioactive ceramic (BC) was then added in different concentrations (3 or 6% w/w) to the selected aerogel implant. The BC had a concentration-dependent effect on the aerogel properties as it ameliorated its mechanical performance (compressive strength = 90 and 150 kPa for 3 and 6%, respectively) and retarded drug release (mean release time = 2.34 and 3.4 h for 3 and 6%, respectively) (p < 0.05). The microphotograph of the selected aerogel implant loaded with BC showed a rough surface with an interconnective porous structure. During cell biology testing, the selected implant loaded with the lower BC concentration had the highest ability to increase MG-63 cells proliferation. In conclusion, TONFC is a promising material to formulate rosuvastatin-loaded aerogel implant with the aid of glucosamine and bioactive ceramic for dental socket preservation.


Asunto(s)
Celulosa , Saccharum , Celulosa/química , Cerámica , Glucosamina , Rosuvastatina Cálcica
7.
Int Immunopharmacol ; 99: 108004, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34333358

RESUMEN

INTRODUCTION: SARS-CoV-2 replication in cell cultures has been shown to be inhibited by ivermectin. However, ivermectin's low aqueous solubility and bioavailabilityhinders its application in COVID-19 treatment. Also, it has been suggested that best outcomes for this medication can be achieved via direct administration to the lung. OBJECTIVES: This study aimed at evaluating the safety of a novel ivermectin inhalable formulation in rats as a pre-clinical step. METHODS: Hydroxy propyl-ß-cyclodextrin(HP-ß-CD) was used to formulate readily soluble ivermectin lyophilized powder. Adult male rats were used to test lung toxicity for ivermectin-HP-ß-CD formulations in doses of 0.05, 0.1, 0.2, 0.4 and 0.8 mg/kg for 3 successive days. RESULTS: The X-ray diffraction for lyophilized ivermectin-HP-ß-CD revealed its amorphous structure that increased drug aqueous solubility 127-fold and was rapidly dissolved within 5 s in saline.Pulmonary administration of ivermectin-HP-ß-CD in dosesof 0.2, 0.4 and 0.8 mg/kgshowed dose-dependent increase in levels of TNF-α, IL-6, IL-13 and ICAM-1 as well as gene expression of MCP-1, protein expression of PIII-NP and serum levels of SP-D paralleled by reduction in IL-10. Moreover, lungs treated with ivermectin (0.2 mg/kg) revealed mild histopathological alterations, while severe pulmonary damage was seen in rats treated with ivermectin at doses of 0.4 and 0.8 mg/kg. However, ivermectin-HP-ß-CD formulation administered in doses of 0.05 and 0.1 mg/kg revealed safety profiles. CONCLUSION: The safety of inhaledivermectin-HP-ß-CD formulation is dose-dependent. Nevertheless, use of low doses(0.05 and 0.1 mg/kg) could be considered as a possible therapeutic regimen in COVID-19 cases.


Asunto(s)
Ivermectina/efectos adversos , Pulmón/metabolismo , Animales , Citocinas/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Ivermectina/química , Pulmón/patología , Masculino , Ratas , Ratas Endogámicas WF , Receptores CCR2 , Solubilidad , Tratamiento Farmacológico de COVID-19
8.
Int J Nanomedicine ; 16: 2667-2687, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854314

RESUMEN

PURPOSE: The goal was to directly deliver curcumin, a natural polyphenolic anticancer and anti-inflammatory compound, to the lung tissues with minimal systemic exposure through the fabrication of proliposomes, overcoming its poor aqueous solubility and oral bioavailability. METHODS: Nano-spray drying was employed to prepare proliposomes using hydroxypropyl beta-cyclodextrin as a carrier. Lecithin and cholesterol were used as lipids, stearylamine and Poloxamer 188 were added as positive charge inducer and a surfactant, respectively. Different characterization parameters were evaluated like percentage yield, entrapment efficiency, drug loading, aerodynamic particle size, in vitro release besides morphological examination. Cytotoxicity studies on cell line A549 lung tumor cells as well as in vivo lung pharmacokinetic studies were also carried. RESULTS: The optimized formulations showed superior aerosolization properties coupled their enhanced ability to reach deep lung tissues with a high % of fine particle fraction. Cytotoxicity studies using MTT assay demonstrated enhanced growth inhibitory effect on lung tumor cells A549 and significant reduction of proinflammatory cytokines such as tumor necrosis factor-α, interleukin-6 and interleukin-10 compared to the pure drug. Results of lung pharmacokinetic tests confirmed the superiority of proliposomal curcumin over curcumin powder in both, the rate and extent of lung tissue absorption, as well as the mean residence time within the lung tissues. CONCLUSION: The pulmonary delivery of curcumin-loaded proliposomes as dry powder provides a direct approach to lung tissues targeting while avoiding the limitations of the oral route and offering a non-invasive alternative to the parenteral one.


Asunto(s)
Curcumina/administración & dosificación , Curcumina/farmacología , Sistemas de Liberación de Medicamentos , Pulmón/efectos de los fármacos , Secado por Pulverización , Células A549 , Animales , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría , Muerte Celular/efectos de los fármacos , Curcumina/farmacocinética , Liberación de Fármacos , Humanos , Liposomas , Masculino , Tamaño de la Partícula , Poloxámero/química , Polvos , Ratas , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática
9.
Int J Pharm ; 588: 119732, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32768528

RESUMEN

In the recent decade, three-dimensional (3D) printers started to grow strongly in the field of drug delivery and personalized medicine, as they can tailor dosage forms according to the needs of each individual. This review gives an overview on the basic principles of layer-by-layer building of pharmaceutical dosage forms using different types of 3D printers. Also, the effect of infill percentage and pattern, raster orientation, layer thickness, thermal processing parameters on the printed formulations is highlighted. Additionally, the complex designs constructed by the 3D printers in order to modify the product shape, density, mucoadhesion and drug release are recapitulated. This review summarizes numerous applications for 3D printing in building drug-loaded structures including tablets, scaffolds, implants, microneedles, capsules, films, hydrogels, mouthguards, tubes, stents, vaginal suppositories and rings as well as in pediatric field. Finally, we suggest further investigational researches to aid in the widespread of 3D printing in the industrial pharmaceutical field. The 3D printing technology is expected to revolutionize drug delivery systems through customization of pharmaceutical formulations.


Asunto(s)
Sistemas de Liberación de Medicamentos , Impresión Tridimensional , Tecnología Farmacéutica , Niño , Composición de Medicamentos , Liberación de Fármacos , Humanos , Comprimidos
10.
AAPS PharmSciTech ; 21(6): 205, 2020 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-32715367

RESUMEN

In this research, we examined the effect of rosuvastatin calcium-loaded nanoparticles on the hair growth-promoting activity on Albino rats. Nanoparticles were prepared using 2:1 weight ratio of drug to methyl-ß-cyclodextrin with 10, 20, and 30% stabilizers (phospholipid, polyvinyl pyrrolidone K30, and Compritol 888 ATO) using nanospray dryer. Subsequently, the prepared nanoparticles were evaluated for their process yield, particle size, polydispersity index, zeta potential, and in vitro drug release as well as in vivo studies. The dried nanoparticles showed process yield values up to 84% with particle size values ranging from 218 to 6258 nm, polydispersity index values ranging from 0.32 to 0.99, and zeta potential values ranging from - 6.1 to - 11.9 mV. Combination of methyl-ß-cyclodextrin with 10% polyvinyl pyrrolidone K30 accomplished nanoparticles with the lowest particle size (218 nm) and polydispersity index (0.32) values. These nanoparticles had suitable process yield value (70.5%) and were able to retard drug release. The hair growth-promoting activity for the selected nanoparticles revealed the highest hair length values in Albino rats after 14 days of the hair growth study compared with non-medicated nanoparticles, nanoparticles' physical mixture, rosuvastatin solution, and marketed minoxidil preparation groups as well as the control group. The immunohistochemistry images for both selected nanoparticles and marketed minoxidil groups showed a significant increase in the diameter of hair follicle and percent area fraction of cytokeratin 19 in the outer root sheath of hair follicle compared with other tested groups. Rosuvastatin nanoparticles prepared by nanospray drying technique could be a good competitor to minoxidil for hair growth-promoting activity. Graphical abstract.


Asunto(s)
Cabello/crecimiento & desarrollo , Nanopartículas/administración & dosificación , Rosuvastatina Cálcica/administración & dosificación , Animales , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Masculino , Ratas
11.
Eur J Pharm Sci ; 127: 185-198, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30412769

RESUMEN

In this study we explored the role of rosuvastatin calcium in skin regeneration as statins play important role in the field of tissue engineering. Chitosan hydrochloride was crosslinked with different weight ratios of collagen, ß-glycerolphosphate and carboxymethyl cellulose to produce scaffolds by lyophilization technique. Subsequently, the fabricated scaffolds were examined for their morphology, water absorption capacity, water retention, friability and in-vitro drug release as well as in-vivo studies. The results revealed porous 3-D structured scaffolds with maximum water absorption values-ranging between 396 and 2993%. Scaffolds containing carboxymethyl cellulose revealed highest water absorption-values. In-vitro drug release results showed gradual drug release for 60 h with mean dissolution time-values (MDT) between 13 and 21 h. Combination of chitosan, collagen, carboxymethyl cellulose in weight ratio of 40:30:30, respectively achieved gradual disintegration of the scaffold in a simulating medium to an open wound after 4 days. This selected scaffold loaded with rosuvastatin revealed increase proliferation of human dermal fibroblasts compared to placebo scaffold. After 30 days of implantation of selected medicated scaffold loaded with/without mesenchymal stem cells and placebo scaffolds to induced wounds in Albino rats, enhanced skin regeneration and absence of scar formation for drug loaded scaffolds were observed. The histopathological study showed the advantage of stem cells-loaded scaffolds through the normal redistribution of collagen in the epidermal layer. In conclusion, rosuvastatin calcium and stem cells loaded in the tested scaffolds proved their potential effect in enhancing skin healing and regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Rosuvastatina Cálcica/administración & dosificación , Andamios del Tejido , Cicatrización de Heridas/efectos de los fármacos , Animales , Quitosano , Liberación de Fármacos , Masculino , Ratas , Rosuvastatina Cálcica/química , Piel/efectos de los fármacos , Fenómenos Fisiológicos de la Piel/efectos de los fármacos
12.
Eur J Gastroenterol Hepatol ; 30(8): 876-881, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29727383

RESUMEN

BACKGROUND AND AIMS: Treatment of hepatitis C virus (HCV) after successfully treated hepatocellular carcinoma (HCC) becomes possible with the introduction of direct-acting antivirals because of their favorable efficacy, safety, and short period of treatment. Few data are available on the results of treatment using different direct-acting antiviral regimens in successfully treated HCC and a lot of debate about its role in tumor recurrence. METHODS: Sixty-two HCV-related HCC patients were enrolled in the study after successfully treated HCC; the studied population included either Child-Pugh 'A' or 'B7'. The patients were subcategorized to receive one of the following regimens: group 1: sofosbuvir (SOF)+ribavirin (RBV) for 24 weeks, group 2: SOF+simeprevir for 12 weeks, group 3: SOF+daclatasvir for 24 weeks, and group 4: SOF+daclatasvir+RBV for 12 weeks. The overall median follow-up period is 12 months after treatment initiation. RESULTS: All treatment regimens were tolerable for all patients, with no reported major adverse events during treatment. The overall sustained virologic response rate was 64.5%, with the highest result in group 4 and the lowest result in group 1; 87.5 and 26.7%, respectively. HCC recurrence was observed in 42% of patients; 80.7% of these patients developed recurrence within 6 months of treatment initiation. CONCLUSION: Treatment of HCV in successfully treated HCC is feasible, with the best results achieved using multiple direct-acting antivirals and RBV; a high rate of HCC recurrence was observed, especially within the first 6 months of treatment initiation (ClinicalTrials.gov no: NCT02771405).


Asunto(s)
Antivirales/uso terapéutico , Carcinoma Hepatocelular/terapia , Hepatitis C/tratamiento farmacológico , Neoplasias Hepáticas/terapia , Anciano , Antivirales/efectos adversos , Carbamatos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/epidemiología , Carcinoma Hepatocelular/virología , Quimioterapia Combinada , Egipto/epidemiología , Femenino , Hepatitis C/diagnóstico , Hepatitis C/epidemiología , Humanos , Imidazoles/uso terapéutico , Incidencia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/virología , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Estudios Prospectivos , Pirrolidinas , Ribavirina/uso terapéutico , Factores de Riesgo , Simeprevir/uso terapéutico , Sofosbuvir/uso terapéutico , Respuesta Virológica Sostenida , Factores de Tiempo , Resultado del Tratamiento , Valina/análogos & derivados
13.
Mol Pharm ; 13(9): 2951-65, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27010795

RESUMEN

The effect of using methyl-ß-cyclodextrin and hydroxypropyl-ß-cyclodextrin as carriers for econazole nitrate nanoparticles prepared by nano spray dryer was explored in this work. Stabilizers, namely, poly(ethylene oxide), polyvinylpyrrolidone k30, poloxamer 407, Tween 80, and Cremophor EL, were used. The nano spray dried formulations revealed almost spherical particles with an average particle size values ranging from 121 to 1565 nm and zeta potential values ranging from -0.8 to -2.5 mV. The yield values for the obtained formulations reached 80%. The presence of the drug in the amorphous state within the nanosuspension matrix system significantly improved drug release compared to that for pure drug. Combination of hydroxypropyl-ß-cyclodextrin with Tween 80 achieved an important role for preserving the econazole nanosuspension from aggregation during storage for one year at room temperature as well as improving drug release from the nanosuspension. This selected formulation was suspended in chitosan HCl to increase drug release and bioavailability. The in vivo evaluation on albino rabbit's eyes demonstrated distinctly superior bioavailability of the selected formulation suspended in chitosan compared to its counterpart formulation suspended in buffer and crude drug suspension due to its mucoadhesive properties and nanosize. The nano spray dryer could serve as a one step technique toward formulating stable and effective nanosuspensions.


Asunto(s)
Econazol/farmacocinética , Nanopartículas/química , Suspensiones/química , Animales , Rastreo Diferencial de Calorimetría , Liberación de Fármacos , Econazol/administración & dosificación , Econazol/química , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura , Soluciones Oftálmicas/administración & dosificación , Soluciones Oftálmicas/química , Soluciones Oftálmicas/farmacocinética , Tamaño de la Partícula , Conejos , Viscosidad , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA