Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(9): e30187, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707307

RESUMEN

Sepsis and drug resistance represent a complex of the most common global causes of mortality in intensive care units (ICUs) especially among patients with comorbidities. Extraintestinal pathogenic Escherichia coli (ExPEC) strains are highly implicated in systemic infections, with multidrug resistance exacerbating the risk of chronic conditions and patient mortality. The diversity of virulence and evolution of multidrug resistance are yet to be fully deciphered. In this work, we aimed at unveiling the pathogens and their genomic determinants of virulence and drug resistance relevant to increased sepsis in a sickle cell child admitted to ICU. From a rectal swab, we isolated a strain of E. coli from the patient and phenotypically tested it against a panel of selected beta lactams, fluoroquinolones, macrolides, aminoglycosides and colistin. We then sequenced the entire genome and integrated multiple bioinformatic pipelines to divulge the virulence and multidrug resistance profiles of the isolate. Our results revealed that the isolate belongs to the sequence type (ST) 58/24, which (ST58), is a known ExPEC. With the use of PathogenFinder, we were able to confirm that this isolate is a human pathogen (p = 0.936). The assembled chromosome and two plasmids encode virulence factors related to capsule (antiphagocytosis), serum survival and resistance, type 6 secretion system (T6SS), multiple siderophores (iron acquisition), and biosynthetic gene clusters for polyketides and nonribosomal peptides exhibiting host cell damaging activity in silico. The genome also harbors multidrug resistance genotypes including extended spectrum beta lactamase (ESBL) genes such as blaTEM-1A/B, sulfonamide resistance genes sul1/2, fluoroquinolone resistance genes dfrA5 and nonsynonymous mutations of the gene pmrB, conferring intrinsic colistin resistance. Conclusively, this pathogen holds the potential to cause systemic infection and might exacerbate sickle cell anemia in the patient. The virulence and multidrug resistance profiles are encoded by both the chromosome and plasmids. Genomic surveillance of pathogens with multidrug resistance among patients with commodities is crucial for effective disease management.

2.
Infect Genet Evol ; 120: 105591, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604286

RESUMEN

Sepsis and multidrug resistance comprise a complex of factors attributable to mortality among intensive care unit (ICU) patients globally. Pathogens implicated in sepsis are diverse, and their virulence and drug resistance remain elusive. From a tertiary care hospital ICU in Uganda, we isolated a Citrobacter freundii strain RSM030 from a patient with sepsis and phenotypically tested it against a panel of 16 antibiotics including imipenem levofloxacin, cotrimoxazole and colistin, among others. We sequenced the organism's genome and integrated multilocus sequencing (MLST), PathogenFinder with Virulence Factor analyzer (VFanalyzer) to establish its pathogenic relevance. Thereafter, we combined antiSMASH and PRISM genome mining with molecular docking to predict biosynthetic gene clusters (BGCs), pathways, toxin structures and their potential targets in-silico. Finally, we coupled ResFinder with comprehensive antibiotic resistance database (CARD) to scrutinize the genomic antimicrobial resistance profile of the isolate. From PathogenFinder and MLST, this organism was confirmed to be a human pathogen (p = 0.843), sequence type (ST)150, whose virulence is determined by chromosomal type III secretion system (T3SS) (the injectosome) and plasmid-encoded type IV secretion system (T4SS), the enterobactin biosynthetic gene cluster and biofilm formation through the pgaABCD operon. Pathway and molecular docking analyses revealed that the shikimate pathway can generate a toxin targeting multiple host proteins including spectrin, detector of cytokinesis protein 2 (Dock2) and plasmalemma vesicle-associated protein (PLVAP), potentially distorting the host cell integrity. From phenotypic antibiotic testing, we found indeterminate results for amoxicillin/clavulanate and levofloxacin, with resistance to cotrimoxazole and colistin. Detailed genome analysis revealed chromosomal beta lactam resistance genes, i.e. blaCMY-79, blaCMY-116 and blaTEM-1B, along with multiple mutations of the lipopolysaccharide modifying operon genes PmrA/PmrB, pmrD, mgrA/mgrB and PhoP/PhoQ, conferring colistin resistance. From these findings, we infer that Citrobacter freundii strain RSM030 is implicated in sepsis and resistance to standard antibiotics, including colistin, the last resort.


Asunto(s)
Antibacterianos , Citrobacter freundii , Infecciones por Enterobacteriaceae , Unidades de Cuidados Intensivos , Simulación del Acoplamiento Molecular , Sepsis , Centros de Atención Terciaria , Humanos , Sepsis/microbiología , Sepsis/tratamiento farmacológico , Antibacterianos/farmacología , Citrobacter freundii/genética , Citrobacter freundii/efectos de los fármacos , Uganda , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Colistina/farmacología , Virulencia/genética , Pruebas de Sensibilidad Microbiana , Genómica/métodos , Farmacorresistencia Bacteriana/genética , Genoma Bacteriano , Tipificación de Secuencias Multilocus , Farmacorresistencia Bacteriana Múltiple/genética , Factores de Virulencia/genética
3.
Data Brief ; 48: 109119, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37383809

RESUMEN

Priestia is a genus of biotechnologically important bacteria adapted to thrive in a wide range of environmental conditions including the marine sediments. Here, we screened and isolated a strain from the Bagamoyo marine mangrove-inhabited sediments and then employed whole genome sequencing to recover and define its full genome. De novo-assembly with Unicycler (v. 0.4.8) and annotation with Prokaryotic Genome Annotation Pipeline (PGAP) revealed that that its genome contains one chromosome (5,549,131 bp), with a GC content of 37.62%. Further analysis showed that the genome contains 5,687 coding sequences (CDS), 4 rRNAs, 84 tRNAs, 12 ncRNAs, and at least 2 plasmids (1,142 bp and 6,490 bp). On the other hand, antiSMASH-based secondary metabolite analysis revealed that the novel strain (MARUCO02) contains gene clusters for biosynthesis of MEP-DOXP-dependent versatile isoprenoids (eg. carotenoids), siderophores (synechobactin and schizokinen) and polyhydroxyalkanoates (PHA). The genome dataset also informs about the presence genes encoding enzymes required for generation of hopanoids, compounds that confer adaption to harsh environmental conditions including industrial cultivation recipes. Our data from this novel Priestia megaterium strain MARUCO02 can be used for reference and in genome-guided selection of strains for production of isoprenoids as well as industrially useful siderophores and polymers, amenable for biosynthetic manipulations in a biotechnological process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA