Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 7476, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33820935

RESUMEN

Due to the multiplicity of biogeochemical processes taking place in anaerobic digestion (AD) systems and limitations of the available analytical techniques, assessing the bioavailability of trace elements (TEs) is challenging. Determination of TE speciation can be facilitated by developing a mathematical model able to consider the physicochemical processes affecting TEs dynamics. A modeling framework based on anaerobic digestion model no 1 (ADM1) has been proposed to predict the biogeochemical fate TEs in AD environments. In particular, the model considers the TE adsorption-desorption reactions with biomass, inerts and mineral precipitates, as well as TE precipitation/dissolution, complexation reactions and biodegradation processes. The developed model was integrated numerically, and numerical simulations have been run to investigate the model behavior. The simulation scenarios predicted the effect of (i) organic matter concentration, (ii) initial TEs concentrations, (iii) initial Ca-Mg concentrations, (iv) initial EDTA concentration, and (v) change in TE binding site density, on cumulative methane production and TE speciation. Finally, experimental data from a real case continuous AD system have been compared to the model predictions. The results prove that this modelling framework can be applied to various AD operations and may also serve as a basis to develop a model-predictive TE dosing strategy.

2.
Bioresour Technol ; 276: 253-259, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30640019

RESUMEN

In this study, a new model based on anaerobic digestion model no.1 (ADM1) approach has been proposed to simulate trace elements (TEs) complexation, precipitation and their effect on the anaerobic batch methane production. TEs complexation reactions with VFAs and EDTA have been incorporated in an extended ADM1 model which considers TE precipitation/dissolution reactions as well as biodegradation processes. The kinetic model tracks the dynamics of 90 state variables which constitute the components of the proposed anaerobic digestion (AD) model. The incorporation of the complexation reactions required the definition of new inorganic components (EDTA species) and new complexation process rates in the ADM1 framework. The charge balance was modified accordingly to consider the effects of the additional components. The new model is able to predict: a) the effect of TE-EDTA/VFA complexation on methane production, and b) the effect of the initial calcium and magnesium concentrations on process performance.


Asunto(s)
Modelos Teóricos , Anaerobiosis , Biodegradación Ambiental , Reactores Biológicos , Ácidos Grasos Volátiles/metabolismo , Cinética , Oligoelementos/análisis
3.
Bioresour Technol ; 267: 666-676, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30064090

RESUMEN

Due to the complex biogeochemistry of trace elements (TEs, e.g. Fe, Ni and Co) in anaerobic digestion processes, their role and fate is poorly understood. Challenging, time consuming and low detection limits of analytical procedures necessitate recruitment of mathematical models. A dynamic mathematical model based on anaerobic digestion model no.1 (ADM1) has been proposed to simulate the effect of TEs. New chemical equilibrium association/dissociation and precipitation/dissolution reactions have been implemented to determine TE bioavailability and their effect on anaerobic digestion. The model considers interactions with inorganic carbonate (HCO3- and CO32-), phosphate (PO43-, HPO42-, H2PO4-) and sulfide (HS- and S2-). The effect of deficiency, activation, inhibition and toxicity of TEs on the biochemical processes has been modelled based on a dose-response type inhibition function. The new model can predict: the dynamics of TEs (among carbonate, sulfide and phosphate); the starvation of TEs; and the effect of initial sulfur-phosphorus ratio in an in-silico batch anaerobic system.


Asunto(s)
Reactores Biológicos , Modelos Teóricos , Oligoelementos/química , Anaerobiosis , Fósforo , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA