Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Life Sci Alliance ; 8(1)2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39467636

RESUMEN

Brain calcification, the ectopic mineral deposits of calcium phosphate, is a frequent radiological finding and a diagnostic criterion for primary familial brain calcification. We previously showed that microglia curtail the growth of small vessel calcification via the triggering receptor expressed in myeloid 2 (TREM2) in the Pdgfb ret/ret mouse model of primary familial brain calcification. Because boosting TREM2 function using activating antibodies has been shown to be beneficial in other disease conditions by aiding in microglial clearance of diverse pathologies, we investigated whether administration of a TREM2-activating antibody could mitigate vascular calcification in Pdgfb ret/ret mice. Single-nucleus RNA-sequencing analysis showed that calcification-associated microglia share transcriptional similarities to disease-associated microglia and exhibited activated TREM2 and TGFß signaling. Administration of a TREM2-activating antibody increased TREM2-dependent microglial deposition of cathepsin K, a collagen-degrading protease, onto calcifications. However, this did not ameliorate the calcification load or alter the mineral composition and the microglial phenotype around calcification. We therefore conclude that targeting microglia with TREM2 agonistic antibodies is insufficient to demineralize and clear vascular calcifications.


Asunto(s)
Modelos Animales de Enfermedad , Glicoproteínas de Membrana , Microglía , Receptores Inmunológicos , Transducción de Señal , Calcificación Vascular , Animales , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Ratones , Microglía/metabolismo , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Masculino , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/patología , Encéfalo/metabolismo , Encéfalo/patología , Ratones Endogámicos C57BL
2.
Neuron ; 112(16): 2732-2748.e8, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38897208

RESUMEN

Microglia are brain-resident macrophages that contribute to central nervous system (CNS) development, maturation, and preservation. Here, we examine the consequences of permanent microglial deficiencies on brain aging using the Csf1rΔFIRE/ΔFIRE mouse model. In juvenile Csf1rΔFIRE/ΔFIRE mice, we show that microglia are dispensable for the transcriptomic maturation of other brain cell types. By contrast, with advancing age, pathologies accumulate in Csf1rΔFIRE/ΔFIRE brains, macroglia become increasingly dysregulated, and white matter integrity declines, mimicking many pathological features of human CSF1R-related leukoencephalopathy. The thalamus is particularly vulnerable to neuropathological changes in the absence of microglia, with atrophy, neuron loss, vascular alterations, macroglial dysregulation, and severe tissue calcification. We show that populating Csf1rΔFIRE/ΔFIRE brains with wild-type microglia protects against many of these pathological changes. Together with the accompanying study by Chadarevian and colleagues1, our results indicate that the lifelong absence of microglia results in an age-related neurodegenerative condition that can be counteracted via transplantation of healthy microglia.


Asunto(s)
Envejecimiento , Encéfalo , Microglía , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Microglía/patología , Microglía/metabolismo , Animales , Ratones , Envejecimiento/patología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Encéfalo/patología , Ratones Endogámicos C57BL , Masculino , Sustancia Blanca/patología , Leucoencefalopatías/patología , Tálamo/patología
3.
Brain Pathol ; 33(6): e13189, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37505935

RESUMEN

Calcification of the cerebral microvessels in the basal ganglia in the absence of systemic calcium and phosphate imbalance is a hallmark of primary familial brain calcification (PFBC), a rare neurodegenerative disorder. Mutation in genes encoding for sodium-dependent phosphate transporter 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), platelet-derived growth factor B (PDGFB), platelet-derived growth factor receptor beta (PDGFRB), myogenesis regulating glycosidase (MYORG), and junctional adhesion molecule 2 (JAM2) are known to cause PFBC. Loss-of-function mutations in XPR1, the only known inorganic phosphate exporter in metazoans, causing dominantly inherited PFBC was first reported in 2015 but until now no studies in the brain have addressed whether loss of one functional allele leads to pathological alterations in mice, a commonly used organism to model human diseases. Here we show that mice heterozygous for Xpr1 (Xpr1WT/lacZ ) present with reduced inorganic phosphate levels in the cerebrospinal fluid and age- and sex-dependent growth of vascular calcifications in the thalamus. Vascular calcifications are surrounded by vascular basement membrane and are located at arterioles in the smooth muscle layer. Similar to previously characterized PFBC mouse models, vascular calcifications in Xpr1WT/lacZ mice contain bone matrix proteins and are surrounded by reactive astrocytes and microglia. However, microglial activation is not confined to calcified vessels but shows a widespread presence. In addition to vascular calcifications, we observed vessel tortuosity and transmission electron microscopy analysis revealed microangiopathy-endothelial swelling, phenotypic alterations in vascular smooth muscle cells, and thickening of the basement membrane.


Asunto(s)
Encefalopatías , Enfermedades Neurodegenerativas , Calcificación Vascular , Humanos , Animales , Ratones , Encefalopatías/patología , Fosfatos/metabolismo , Encéfalo/patología , Receptor de Retrovirus Xenotrópico y Politrópico , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Enfermedades Neurodegenerativas/patología , Mutación , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo
4.
Life Sci ; 321: 121593, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36934970

RESUMEN

AIMS: Neurovascular-glymphatic dysfunction plays an important role in Alzheimer's disease and has been analysed mainly in relation to amyloid-beta (Aß) pathology. Here, we aim to investigate the neurovascular alterations and mapping of aquaporin 4 (AQP4) distribution and dislocation associated with tau and Aß. MATERIALS AND METHODS: Perfusion, susceptibility weighted imaging and structural magnetic resonance imaging (MRI) were performed in the pR5 mouse model of 4-repeat tau and the arcAß mouse model of amyloidosis. Immunofluorescence staining was performed using antibodies against AQP4, vessel, astroglia, microglia, phospho-tau and Aß in brain tissue slices from pR5, arcAß and non-transgenic mice. KEY FINDINGS: pR5 mice showed regional atrophy, preserved cerebral blood flow, and reduced cerebral vessel density compared to non-transgenic mice, while arcAß mice showed cerebral microbleeds and reduced cerebral vessel density. AQP4 dislocation and peri-tau enrichment in the hippocampus and increased AQP4 levels in the cortex and hippocampus were detected in pR5 mice compared to non-transgenic mice. In comparison, cortical AQP4 dislocation and cortical/hippocampal peri-plaque increases were observed in arcAß mice. Increased expression of reactive astrocytes were detected around the tau inclusions in pR5 mice and Aß plaques in arcAß mice. SIGNIFICANCE: We demonstrated the neurovascular alterations, microgliosis, astrogliosis and increased AQP4 regional expression in pR5 tau and arcAß mice. We observed a divergent region-specific AQP4 dislocation and association with phospho-tau and Aß pathologies.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Acuaporina 4 , Proteínas tau , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Acuaporina 4/genética , Acuaporina 4/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Placa Amiloide/patología , Proteínas tau/metabolismo
5.
Front Aging Neurosci ; 14: 848495, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309892

RESUMEN

Vascular calcifications are characterized by the ectopic deposition of calcium and phosphate in the vascular lumen or wall. They are a common finding in computed tomography scans or during autopsy and are often directly related to a pathological condition. While the pathogenesis and functional consequences of vascular calcifications have been intensively studied in some peripheral organs, vascular calcification, and its pathogenesis in the central nervous system is poorly characterized and understood. Here, we review the occurrence of vessel calcifications in the brain in the context of aging and various brain diseases. We discuss the pathomechanism of brain vascular calcification in primary familial brain calcification as an example of brain vessel calcification. A particular focus is the response of microglia to the vessel calcification in the brain and their role in the clearance of calcifications.

6.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33653955

RESUMEN

Pericytes regulate the development of organ-specific characteristics of the brain vasculature such as the blood-brain barrier (BBB) and astrocytic end-feet. Whether pericytes are involved in the control of leukocyte trafficking in the adult central nervous system (CNS), a process tightly regulated by CNS vasculature, remains elusive. Using adult pericyte-deficient mice (Pdgfbret/ret ), we show that pericytes limit leukocyte infiltration into the CNS during homeostasis and autoimmune neuroinflammation. The permissiveness of the vasculature toward leukocyte trafficking in Pdgfbret/ret mice inversely correlates with vessel pericyte coverage. Upon induction of experimental autoimmune encephalomyelitis (EAE), pericyte-deficient mice die of severe atypical EAE, which can be reversed with fingolimod, indicating that the mortality is due to the massive influx of immune cells into the brain. Additionally, administration of anti-VCAM-1 and anti-ICAM-1 antibodies reduces leukocyte infiltration and diminishes the severity of atypical EAE symptoms of Pdgfbret/ret mice, indicating that the proinflammatory endothelium due to absence of pericytes facilitates exaggerated neuroinflammation. Furthermore, we show that the presence of myelin peptide-specific peripheral T cells in Pdgfbret/ret ;2D2tg mice leads to the development of spontaneous neurological symptoms paralleled by the massive influx of leukocytes into the brain. These findings indicate that intrinsic changes within brain vasculature can promote the development of a neuroinflammatory disorder.


Asunto(s)
Barrera Hematoencefálica/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Homeostasis/inmunología , Leucocitos/inmunología , Pericitos/inmunología , Animales , Barrera Hematoencefálica/patología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Homeostasis/genética , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/inmunología , Leucocitos/patología , Ratones , Ratones Transgénicos , Pericitos/patología , Proteínas Proto-Oncogénicas c-sis/deficiencia , Proteínas Proto-Oncogénicas c-sis/inmunología , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/inmunología
7.
Sci Adv ; 7(9)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33637522

RESUMEN

Microglia participate in central nervous system (CNS) development and homeostasis and are often implicated in modulating disease processes. However, less is known about the role of microglia in the biology of the neurovascular unit (NVU). In particular, data are scant on whether microglia are involved in CNS vascular pathology. In this study, we use a mouse model of primary familial brain calcification, Pdgfbret/ret , to investigate the role of microglia in calcification of the NVU. We report that microglia enclosing vessel calcifications, coined calcification-associated microglia, display a distinct activation phenotype. Pharmacological ablation of microglia with the CSF1R inhibitor PLX5622 leads to aggravated vessel calcification. Mechanistically, we show that microglia require functional TREM2 for controlling vascular calcification. Our results demonstrate that microglial activity in the setting of pathological vascular calcification is beneficial. In addition, we identify a previously unrecognized function of microglia in halting the expansion of vascular calcification.

8.
Development ; 147(20)2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32994168

RESUMEN

The protein co-factor Ldb1 regulates cell fate specification by interacting with LIM-homeodomain (LIM-HD) proteins in a tetrameric complex consisting of an LDB:LDB dimer that bridges two LIM-HD molecules, a mechanism first demonstrated in the Drosophila wing disc. Here, we demonstrate conservation of this interaction in the regulation of mammalian hippocampal development, which is profoundly defective upon loss of either Lhx2 or Ldb1 Electroporation of a chimeric construct that encodes the Lhx2-HD and Ldb1-DD (dimerization domain) in a single transcript cell-autonomously rescues a comprehensive range of hippocampal deficits in the mouse Ldb1 mutant, including the acquisition of field-specific molecular identity and the regulation of the neuron-glia cell fate switch. This demonstrates that the LHX:LDB complex is an evolutionarily conserved molecular regulatory device that controls complex aspects of regional cell identity in the developing brain.


Asunto(s)
Linaje de la Célula , Secuencia Conservada , Proteínas de Unión al ADN/genética , Evolución Molecular , Hipocampo/citología , Proteínas con Dominio LIM/genética , Proteínas con Homeodominio LIM/genética , Factores de Transcripción/genética , Animales , Tipificación del Cuerpo , Proteínas de Unión al ADN/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Ratones , Mutación/genética , Neurogénesis , Neuroglía/citología , Neuroglía/metabolismo , Unión Proteica , Factores de Transcripción/metabolismo
9.
Cell Rep ; 31(11): 107767, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32553152

RESUMEN

The mammalian precerebellar pontine nucleus (PN) has a main role in relaying cortical information to the cerebellum. The molecular determinants establishing ordered connectivity patterns between cortical afferents and precerebellar neurons are largely unknown. We show that expression of Hox5 transcription factors is induced in specific subsets of postmitotic PN neurons at migration onset. Hox5 induction is achieved by response to retinoic acid signaling, resulting in Jmjd3-dependent derepression of Polycomb chromatin and 3D conformational changes. Hoxa5 drives neurons to settle posteriorly in the PN, where they are monosynaptically targeted by cortical neuron subsets mainly carrying limb somatosensation. Furthermore, Hoxa5 postmigratory ectopic expression in PN neurons is sufficient to attract cortical somatosensory inputs regardless of position and avoid visual afferents. Transcriptome analysis further suggests that Hoxa5 is involved in circuit formation. Thus, Hoxa5 coordinates postmitotic specification, migration, settling position, and sub-circuit assembly of PN neuron subsets in the cortico-cerebellar pathway.


Asunto(s)
Cerebelo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Movimiento Celular/fisiología , Corteza Cerebral/metabolismo
10.
Cell Rep ; 29(8): 2408-2421.e4, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31747609

RESUMEN

Coordinated movement requires the integration of many sensory inputs including proprioception, the sense of relative body position and force associated with movement. Proprioceptive information is relayed to the cerebellum via spinocerebellar neurons, located in the spinal cord within a number of major neuronal columns or as various scattered populations. Despite the importance of proprioception to fluid movement, a molecular understanding of spinocerebellar relay interneurons is only beginning to be explored, with limited knowledge of molecular heterogeneity within and between columns. Using fluorescent reporter mice, neuronal tracing, and in situ hybridization, we identify widespread expression of Hox cluster genes within spinocerebellar neurons. We reveal a "Hox code" based on axial level and individual spinocerebellar column, which, at cervico-thoracic levels, is essential for subtype regionalization. Specifically, we show that Hoxc9 function is required in most, but not all, cells of the thoracic spinocerebellar column, Clarke's column, revealing heterogeneity reliant on Hox signatures.


Asunto(s)
Neuronas/metabolismo , Médula Espinal/citología , Animales , Cerebelo/citología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Interneuronas/citología , Ratones , MicroARNs/metabolismo , Vías Nerviosas/fisiología , Propiocepción/genética , Propiocepción/fisiología , Células Receptoras Sensoriales/citología
11.
J Neurosci ; 37(46): 11245-11254, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29025924

RESUMEN

Regulation of the neuron-glia cell-fate switch is a critical step in the development of the CNS. Previously, we demonstrated that Lhx2 is a necessary and sufficient regulator of this process in the mouse hippocampal primordium, such that Lhx2 overexpression promotes neurogenesis and suppresses gliogenesis, whereas loss of Lhx2 has the opposite effect. We tested a series of transcription factors for their ability to mimic Lhx2 overexpression and suppress baseline gliogenesis, and also to compensate for loss of Lhx2 and suppress the resulting enhanced level of gliogenesis in the hippocampus. Here, we demonstrate a novel function of Dmrt5/Dmrta2 as a neurogenic factor in the developing hippocampus. We show that Dmrt5, as well as known neurogenic factors Neurog2 and Pax6, can each not only mimic Lhx2 overexpression, but also can compensate for loss of Lhx2 to different extents. We further uncover a reciprocal regulatory relationship between Dmrt5 and Lhx2, such that each can compensate for loss of the other. Dmrt5 and Lhx2 also have opposing regulatory control on Pax6 and Neurog2, indicating a complex bidirectionally regulated network that controls the neuron-glia cell-fate switch.SIGNIFICANCE STATEMENT We identify Dmrt5 as a novel regulator of the neuron-glia cell-fate switch in the developing hippocampus. We demonstrate Dmrt5 to be neurogenic, and reciprocally regulated by Lhx2: loss of either factor promotes gliogenesis; overexpression of either factor suppresses gliogenesis and promotes neurogenesis; each can substitute for loss of the other. Furthermore, each factor has opposing effects on established neurogenic genes Neurog2 and Pax6 Dmrt5 is known to suppress their expression, and we show that Lhx2 is required to maintain it. Our study reveals a complex regulatory network with bidirectional control of a fundamental feature of CNS development, the control of the production of neurons versus astroglia in the developing hippocampus.Finally, we confirm that Lhx2 binds a highly conserved putative enhancer of Dmrt5, suggesting an evolutionarily conserved regulatory relationship between these factors. Our findings uncover a complex network that involves Lhx2, Dmrt5, Neurog2, and Pax6, and that ensures the appropriate amount and timing of neurogenesis and gliogenesis in the developing hippocampus.


Asunto(s)
Hipocampo/fisiología , Proteínas con Homeodominio LIM/fisiología , Neurogénesis/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Factores de Transcripción/fisiología , Animales , Secuencia de Bases , Diferenciación Celular/fisiología , Células Cultivadas , Femenino , Hipocampo/citología , Hipocampo/embriología , Masculino , Ratones , Ratones Transgénicos , Embarazo
12.
Front Neural Circuits ; 11: 33, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28567005

RESUMEN

The pontine nuclei (PN) are the largest of the precerebellar nuclei, neuronal assemblies in the hindbrain providing principal input to the cerebellum. The PN are predominantly innervated by the cerebral cortex and project as mossy fibers to the cerebellar hemispheres. Here, we comprehensively review the development of the PN from specification to migration, nucleogenesis and circuit formation. PN neurons originate at the posterior rhombic lip and migrate tangentially crossing several rhombomere derived territories to reach their final position in ventral part of the pons. The developing PN provide a classical example of tangential neuronal migration and a study system for understanding its molecular underpinnings. We anticipate that understanding the mechanisms of PN migration and assembly will also permit a deeper understanding of the molecular and cellular basis of cortico-cerebellar circuit formation and function.


Asunto(s)
Movimiento Celular/fisiología , Cerebelo/citología , Corteza Cerebral/citología , Vías Nerviosas/fisiología , Neuronas/fisiología , Puente/citología , Animales , Cerebelo/embriología , Corteza Cerebral/embriología , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Humanos
13.
J Neurosci ; 37(1): 194-203, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28053041

RESUMEN

In the developing cerebral cortex, sequential transcriptional programs take neuroepithelial cells from proliferating progenitors to differentiated neurons with unique molecular identities. The regulatory changes that occur in the chromatin of the progenitors are not well understood. During deep layer neurogenesis, we show that transcription factor LHX2 binds to distal regulatory elements of Fezf2 and Sox11, critical determinants of neuron subtype identity in the mouse neocortex. We demonstrate that LHX2 binds to the nucleosome remodeling and histone deacetylase histone remodeling complex subunits LSD1, HDAC2, and RBBP4, which are proximal regulators of the epigenetic state of chromatin. When LHX2 is absent, active histone marks at the Fezf2 and Sox11 loci are increased. Loss of LHX2 produces an increase, and overexpression of LHX2 causes a decrease, in layer 5 Fezf2 and CTIP2-expressing neurons. Our results provide mechanistic insight into how LHX2 acts as a necessary and sufficient regulator of genes that control cortical neuronal subtype identity. SIGNIFICANCE STATEMENT: The functional complexity of the cerebral cortex arises from an array of distinct neuronal subtypes with unique connectivity patterns that are produced from common progenitors. This study reveals that transcription factor LHX2 regulates the numbers of specific cortical output neuron subtypes by controlling the genes that are required to produce them. Loss or increase in LHX2 during neurogenesis is sufficient to increase or decrease, respectively, a particular subcerebrally projecting population. Mechanistically, LHX2 interacts with chromatin modifying protein complexes to edit the chromatin landscape of its targets Fezf2 and Sox11, which regulates their expression and consequently the identities of the neurons produced. Thus, LHX2 is a key component of the control network for producing neurons that will participate in cortical circuitry.


Asunto(s)
Corteza Cerebral/citología , Proteínas de Unión al ADN/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción/metabolismo , Animales , Corteza Cerebral/diagnóstico por imagen , Cromatina/genética , Epigénesis Genética , Femenino , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Masculino , Ratones , Nucleosomas/metabolismo , Embarazo
14.
Proc Natl Acad Sci U S A ; 110(50): E4913-21, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24262147

RESUMEN

LIM homeodomain transcription factors are critical regulators of early development in multiple systems but have yet to be examined for a role in circuit formation. The LIM homeobox gene Lhx2 is expressed in cortical progenitors during development and also in the superficial layers of the neocortex in maturity. However, analysis of Lhx2 function at later stages of cortical development has been hampered by severe phenotypes associated with early loss of function. We identified a particular Cre-recombinase line that acts in the cortical primordium after its specification is complete, permitting an analysis of Lhx2 function in neocortical lamination, regionalization, and circuit formation by selective elimination of Lhx2 in the dorsal telencephalon. We report a profound disruption of cortical neuroanatomical and molecular features upon loss of Lhx2 in the cortex from embryonic day 11.5. A unique feature of cortical circuitry, the somatosensory barrels, is undetectable, and molecular patterning of cortical regions appears disrupted. Surprisingly, thalamocortical afferents innervate the mutant cortex with apparently normal regional specificity. Electrophysiological recordings reveal a loss of responses evoked by stimulation of individual whiskers, but responses to simultaneous stimulation of multiple whiskers were present, suggesting that thalamic afferents are unable to organize the neurocircuitry for barrel formation because of a cortex-specific requirement of Lhx2. We report that Lhx2 is required for the expression of transcription factor paired box gene 6, axon guidance molecule Ephrin A5, and the receptor NMDA receptor 1. These genes may mediate Lhx2 function in the formation of specialized neurocircuitry necessary for neocortical function.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas con Homeodominio LIM/metabolismo , Corteza Somatosensorial/embriología , Factores de Transcripción/metabolismo , Animales , Inmunoprecipitación de Cromatina , Efrina-A5/metabolismo , Potenciales Evocados/fisiología , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Integrasas , Proteínas con Homeodominio LIM/deficiencia , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Vías Nerviosas/embriología , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Represoras/metabolismo , Corteza Somatosensorial/metabolismo , Factores de Transcripción/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA