Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Life Sci Alliance ; 7(11)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39179288

RESUMEN

Skin wound healing due to full thickness wounds typically results in fibrosis and scarring, where parenchyma tissue is replaced with connective tissue. A major advance in wound healing research would be to instead promote tissue regeneration. Helminth parasites express excretory/secretory (ES) molecules, which can modulate mammalian host responses. One recently discovered ES protein, TGF-ß mimic (TGM), binds the TGF-ß receptor, though likely has other activities. Here, we demonstrate that topical administration of TGM under a Tegaderm bandage enhanced wound healing and tissue regeneration in an in vivo wound biopsy model. Increased restoration of normal tissue structure in the wound beds of TGM-treated mice was observed during mid- to late-stage wound healing. Both accelerated re-epithelialization and hair follicle regeneration were observed. Further analysis showed differential expansion of myeloid populations at different wound healing stages, suggesting recruitment and reprogramming of specific macrophage subsets. This study indicates a role for TGM as a potential therapeutic option for enhanced wound healing.


Asunto(s)
Fibrosis , Proteínas del Helminto , Regeneración , Cicatrización de Heridas , Animales , Ratones , Proteínas del Helminto/metabolismo , Proteínas del Helminto/farmacología , Piel/metabolismo , Piel/lesiones , Ratones Endogámicos C57BL , Folículo Piloso/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Repitelización , Masculino
3.
Trends Parasitol ; 40(6): 446-448, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772757

RESUMEN

Liebold et al. recently revealed how the identity of dying cells drives distinct changes to the macrophages which engulf and clear them, a process known as efferocytosis. During infection with the helminth Schistosoma mansoni, liver macrophages recapitulate these phenotypes, mediated by Axl/MerTK receptors and regulating egg burdens.


Asunto(s)
Macrófagos , Fagocitosis , Schistosoma mansoni , Animales , Macrófagos/inmunología , Macrófagos/parasitología , Schistosoma mansoni/fisiología , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/inmunología , Esquistosomiasis mansoni/parasitología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/inmunología , Humanos , Hígado/parasitología , Hígado/inmunología , Tirosina Quinasa del Receptor Axl , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa c-Mer/fisiología , Eferocitosis
4.
Immunity ; 57(6): 1260-1273.e7, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38744292

RESUMEN

Upon parasitic helminth infection, activated intestinal tuft cells secrete interleukin-25 (IL-25), which initiates a type 2 immune response during which lamina propria type 2 innate lymphoid cells (ILC2s) produce IL-13. This causes epithelial remodeling, including tuft cell hyperplasia, the function of which is unknown. We identified a cholinergic effector function of tuft cells, which are the only epithelial cells that expressed choline acetyltransferase (ChAT). During parasite infection, mice with epithelial-specific deletion of ChAT had increased worm burden, fitness, and fecal egg counts, even though type 2 immune responses were comparable. Mechanistically, IL-13-amplified tuft cells release acetylcholine (ACh) into the gut lumen. Finally, we demonstrated a direct effect of ACh on worms, which reduced their fecundity via helminth-expressed muscarinic ACh receptors. Thus, tuft cells are sentinels in naive mice, and their amplification upon helminth infection provides an additional type 2 immune response effector function.


Asunto(s)
Acetilcolina , Mucosa Intestinal , Animales , Acetilcolina/metabolismo , Ratones , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitología , Colina O-Acetiltransferasa/metabolismo , Interleucina-13/metabolismo , Interleucina-13/inmunología , Ratones Noqueados , Ratones Endogámicos C57BL , Helmintiasis/inmunología , Helmintiasis/parasitología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Inmunidad Innata , Nematospiroides dubius/inmunología , Células en Penacho
6.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38255817

RESUMEN

Demyelination in the central nervous system (CNS) resulting from injury or disease can cause loss of nerve function and paralysis. Cell therapies intended to promote remyelination of axons are a promising avenue of treatment, with mesenchymal stromal cells (MSCs) a prominent candidate. We have previously demonstrated that MSCs derived from human olfactory mucosa (hOM-MSCs) promote myelination to a greater extent than bone marrow-derived MSCs (hBM-MSCs). However, hOM-MSCs were developed using methods and materials that were not good manufacturing practice (GMP)-compliant. Before considering these cells for clinical use, it is necessary to develop a method for their isolation and expansion that is readily adaptable to a GMP-compliant environment. We demonstrate here that hOM-MSCs can be derived without enzymatic tissue digestion or cell sorting and without culture antibiotics. They grow readily in GMP-compliant media and express typical MSC surface markers. They robustly produce CXCL12 (a key secretory factor in promoting myelination) and are pro-myelinating in in vitro rodent CNS cultures. GMP-compliant hOM-MSCs are comparable in this respect to those grown in non-GMP conditions. However, when assessed in an in vivo model of demyelinating disease (experimental autoimmune encephalitis, EAE), they do not significantly improve disease scores compared with controls, indicating further pre-clinical evaluation is necessary before their advancement to clinical trials.


Asunto(s)
Antibacterianos , Células Madre Mesenquimatosas , Humanos , Técnicas de Cultivo , Axones , Transporte Biológico
7.
Infect Immun ; 92(3): e0039523, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38294241

RESUMEN

HpARI is an immunomodulatory protein secreted by the intestinal nematode Heligmosomoides polygyrus bakeri, which binds and blocks IL-33. Here, we find that the H. polygyrus bakeri genome contains three HpARI family members and that these have different effects on IL-33-dependent responses in vitro and in vivo, with HpARI1+2 suppressing and HpARI3 amplifying these responses. All HpARIs have sub-nanomolar affinity for mouse IL-33; however, HpARI3 does not block IL-33-ST2 interactions. Instead, HpARI3 stabilizes IL-33, increasing the half-life of the cytokine and amplifying responses to it in vivo. Together, these data show that H. polygyrus bakeri secretes a family of HpARI proteins with both overlapping and distinct functions, comprising a complex immunomodulatory arsenal of host-targeted proteins.


Asunto(s)
Nematospiroides dubius , Infecciones por Strongylida , Ratones , Animales , Interleucina-33/genética , Citocinas , Inmunomodulación , Inmunidad
8.
Am J Pathol ; 194(4): 562-573, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37832870

RESUMEN

Coronary reperfusion after acute ST-elevation myocardial infarction (STEMI) is standard therapy to salvage ischemic heart muscle. However, subsequent inflammatory responses within the infarct lead to further loss of viable myocardium. Transforming growth factor (TGF)-ß1 is a potent anti-inflammatory cytokine released in response to tissue injury. The aim of this study was to investigate the protective effects of TGF-ß1 after MI. In patients with STEMI, there was a significant correlation (P = 0.003) between higher circulating TGF-ß1 levels at 24 hours after MI and a reduction in infarct size after 3 months, suggesting a protective role of early increase in circulating TGF-ß1. A mouse model of cardiac ischemia reperfusion was used to demonstrate multiple benefits of exogenous TGF-ß1 delivered in the acute phase. It led to a significantly smaller infarct size (30% reduction, P = 0.025), reduced inflammatory infiltrate (28% reduction, P = 0.015), lower intracardiac expression of inflammatory cytokines IL-1ß and chemokine (C-C motif) ligand 2 (>50% reduction, P = 0.038 and 0.0004, respectively) at 24 hours, and reduced scar size at 4 weeks (21% reduction, P = 0.015) after reperfusion. Furthermore, a low-fibrogenic mimic of TGF-ß1, secreted by the helminth parasite Heligmosomoides polygyrus, had an almost identical protective effect on injured mouse hearts. Finally, genetic studies indicated that this benefit was mediated by TGF-ß signaling in the vascular endothelium.


Asunto(s)
Helmintos , Infarto del Miocardio con Elevación del ST , Animales , Humanos , Ratones , Cicatriz/metabolismo , Helmintos/metabolismo , Miocardio/patología , Infarto del Miocardio con Elevación del ST/metabolismo , Infarto del Miocardio con Elevación del ST/patología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
9.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014296

RESUMEN

The murine helminth parasite Heligmosomoides polygyrus expresses a family of modular proteins which, replicating the functional activity of the immunomodulatory cytokine TGF-ß, have been named TGM (TGF-ß Μimic). Multiple domains bind to different receptors, including TGF-ß receptors TßRI (ALK5) and TßRII through domains 1-3, and prototypic family member TGM1 binds the cell surface co-receptor CD44 through domains 4-5. This allows TGM1 to induce T lymphocyte Foxp3 expression, characteristic of regulatory (Treg) cells, and to activate a range of TGF-ß-responsive cell types. In contrast, a related protein, TGM4, targets a much more restricted cell repertoire, primarily acting on myeloid cells, with less potent effects on T cells and lacking activity on other TGF-ß-responsive cell types. TGM4 binds avidly to myeloid cells by flow cytometry, and can outcompete TGM1 for cell binding. Analysis of receptor binding in comparison to TGM1 reveals a 10-fold higher affinity than TGM1 for TGFßR-I (TßRI), but a 100-fold lower affinity for TßRII through Domain 3. Consequently, TGM4 is more dependent on co-receptor binding; in addition to CD44, TGM4 also engages CD49d (Itga4) through Domains 1-3, as well as CD206 and Neuropilin-1 through Domains 4 and 5. TGM4 was found to effectively modulate macrophage populations, inhibiting lipopolysaccharide-driven inflammatory cytokine production and boosting interleukin (IL)-4-stimulated responses such as Arginase-1 in vitro and in vivo. These results reveal that the modular nature of TGMs has allowed the fine tuning of the binding affinities of the TßR- and co-receptor binding domains to establish cell specificity for TGF-ß signalling in a manner that cannot be attained by the mammalian cytokine.

10.
Cells ; 12(20)2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37887321

RESUMEN

Tuft cells have recently emerged as the focus of intense interest following the discovery of their chemosensory role in the intestinal tract, and their ability to activate Type 2 immune responses to helminth parasites. Moreover, they populate a wide range of mucosal tissues and are intimately connected to immune and neuronal cells, either directly or through the release of pharmacologically active mediators. They are now recognised to fulfil both homeostatic roles, in metabolism and tissue integrity, as well as acting as the first sensors of parasite infection, immunity to which is lost in their absence. In this review we focus primarily on the importance of tuft cells in the intestinal niche, but also link to their more generalised physiological role and discuss their potential as targets for the treatment of gastrointestinal disorders.


Asunto(s)
Helmintos , Parásitos , Enfermedades Parasitarias , Animales , Mucosa Intestinal/metabolismo , Enfermedades Parasitarias/metabolismo , Inmunidad
11.
Vaccine ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37863671

RESUMEN

Hookworm, a parasitic infection, retains a considerable burden of disease, affecting the most underprivileged segments of the general population in endemic countries and remains one of the leading causes of mild to severe anemia in Low and Middle Income Countries (LMICs), particularly in pregnancy and children under 5. Despite repeated large scale Preventive Chemotherapy (PC) interventions since more than 3 decades, there is broad consensus among scholars that elimination targets set in the newly launched NTD roadmap will require additional tools and interventions. Development of a vaccine could constitute a promising expansion of the existing arsenal against hookworm. Therefore, we have evaluated the biological and implementation feasibility of the vaccine development as well as the added value of such a novel tool. Based on pipeline landscaping and the current knowledge on key biological aspects of the pathogen and its interactions with the host, we found biological feasibility of development of a hookworm vaccine to be moderate. Also, our analysis on manufacturing and regulatory issues as well as potential uptake yielded moderate implementation feasibility. Modelling studies suggest a that introduction of a vaccine in parallel with ongoing integrated interventions (PC, WASH, shoe campaigns), could substantially reduce burden of disease in a cost - saving mode. Finally a set of actions are recommended that might impact positively the likelihood of timely development and introduction of a hookworm vaccine.

12.
Nat Commun ; 14(1): 5627, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699869

RESUMEN

Tissue-resident macrophage populations constitute a mosaic of phenotypes, yet how their metabolic states link to the range of phenotypes and functions in vivo is still poorly defined. Here, using high-dimensional spectral flow cytometry, we observe distinct metabolic profiles between different organs and functionally link acetyl CoA carboxylase activity to efferocytotic capacity. Additionally, differences in metabolism are evident within populations from a specific site, corresponding to relative stages of macrophage maturity. Immune perturbation with intestinal helminth infection increases alternative activation and metabolic rewiring of monocyte-derived macrophage populations, while resident TIM4+ intestinal macrophages remain immunologically and metabolically hyporesponsive. Similar metabolic signatures in alternatively-activated macrophages are seen from different tissues using additional helminth models, but to different magnitudes, indicating further tissue-specific contributions to metabolic states. Thus, our high-dimensional, flow-based metabolic analyses indicates complex metabolic heterogeneity and dynamics of tissue-resident macrophage populations at homeostasis and during helminth infection.


Asunto(s)
Helmintiasis , Humanos , Homeostasis , Histiocitos , Macrófagos , Citometría de Flujo
13.
STAR Protoc ; 4(4): 102608, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37751353

RESUMEN

Parasitic helminth worms frequently infect the gastrointestinal tract and interact with the intestinal epithelium and specialized cell types within it. Intestinal organoids derived from stem cells that line the intestine represent a transformational technology in the study of epithelial-parasite dialogue. Here, we present a protocol for establishing small intestine organoid cultures and administering parasite products of interest to these cultures. We then describe steps for evaluating their impact by microscopy, flow cytometry, immunohistology, and mRNA gene expression. For complete details on the use and execution of this protocol, please refer to Drurey et al. (2022).1.


Asunto(s)
Intestino Delgado , Intestinos , Ratones , Animales , Mucosa Intestinal , Organoides , Tracto Gastrointestinal
14.
J Exp Med ; 220(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37638887

RESUMEN

In this new review, Rick Maizels and Bill Gause summarize how type 2 immune responses combat helminth parasites through novel mechanisms, coordinating multiple innate and adaptive cell and molecular players that can eliminate infection and repair-resultant tissue damage.


Asunto(s)
Helmintiasis , Helmintos , Animales , Helmintiasis/inmunología
15.
Genome Biol Evol ; 15(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37625791

RESUMEN

The Transforming Growth Factor-ß mimic (TGM) multigene family was recently discovered in the murine intestinal parasite Heligmosomoides polygyrus. This family was shaped by an atypical set of organismal and molecular evolutionary mechanisms along its path through the adaptive landscape. The relevant mechanisms are mimicry, convergence, exon modularity, new gene origination, and gene family neofunctionalization. We begin this review with a description of the TGM family and then address two evolutionary questions: "Why were TGM proteins needed for parasite survival" and "when did the TGM family originate"? For the former, we provide a likely answer, and for the latter, we identify multiple TGM building blocks in the ruminant intestinal parasite Haemonchus contortus. We close by identifying avenues for future investigation: new biochemical data to assign functions to more family members as well as new sequenced genomes in the Trichostrongyloidea superfamily and the Heligmosomoides genus to clarify TGM origins and expansion. Continued study of TGM proteins will generate increased knowledge of Transforming Growth Factor-ß signaling, host-parasite interactions, and metazoan evolutionary mechanisms.


Asunto(s)
Haemonchus , Parásitos , Animales , Ratones , Interacciones Huésped-Parásitos/genética , Haemonchus/genética , Inmunidad , Factores de Crecimiento Transformadores
16.
Proc Natl Acad Sci U S A ; 120(34): e2302370120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590410

RESUMEN

Long-lived parasites evade host immunity through highly evolved molecular strategies. The murine intestinal helminth, Heligmosomoides polygyrus, down-modulates the host immune system through release of an immunosuppressive TGF-ß mimic, TGM1, which is a divergent member of the CCP (Sushi) protein family. TGM1 comprises 5 domains, of which domains 1-3 (D1/2/3) bind mammalian TGF-ß receptors, acting on T cells to induce Foxp3+ regulatory T cells; however, the roles of domains 4 and 5 (D4/5) remain unknown. We noted that truncated TGM1, lacking D4/5, showed reduced potency. Combination of D1/2/3 and D4/5 as separate proteins did not alter potency, suggesting that a physical linkage is required and that these domains do not deliver an independent signal. Coprecipitation from cells treated with biotinylated D4/5, followed by mass spectrometry, identified the cell surface protein CD44 as a coreceptor for TGM1. Both full-length and D4/5 bound strongly to a range of primary cells and cell lines, to a greater degree than D1/2/3 alone, although some cell lines did not respond to TGM1. Ectopic expression of CD44 in nonresponding cells conferred responsiveness, while genetic depletion of CD44 abolished enhancement by D4/5 and ablated the ability of full-length TGM1 to bind to cell surfaces. Moreover, CD44-deficient T cells showed attenuated induction of Foxp3 by full-length TGM1, to levels similar to those induced by D1/2/3. Hence, a parasite protein known to bind two host cytokine receptor subunits has evolved a third receptor specificity, which serves to raise the avidity and cell type-specific potency of TGF-ß signaling in mammalian cells.


Asunto(s)
Parásitos , Animales , Ratones , Linfocitos T Reguladores , Transducción de Señal , Factor de Crecimiento Transformador beta , Factores de Transcripción Forkhead , Mamíferos
17.
Trends Parasitol ; 39(7): 547-562, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37225557

RESUMEN

Regulatory T cells (Tregs) are essential to control immune system responses to innocuous self-specificities, intestinal and environmental antigens. However, they may also interfere with immunity to parasites, particularly in chronic infection. Susceptibility to many parasite infections is, to a greater or lesser extent, controlled by Tregs, but often they play a more prominent role in moderating the immunopathological consequences of parasitism, and dampening bystander reactions in an antigen-nonspecific manner. More recently, Treg subtypes have been defined which may preferentially act in different contexts; we also discuss the degree to which this specialisation is now being mapped onto how Tregs maintain the delicate balance between tolerance, immunity, and pathology in infection.


Asunto(s)
Enfermedades Parasitarias , Linfocitos T Reguladores , Humanos , Intestinos
18.
Discov Immunol ; 2(1): kyad001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36855464

RESUMEN

In animal models of inflammatory colitis, pathology can be ameliorated by several intestinal helminth parasites, including the mouse nematode Heligmosomoides polygyrus. To identify parasite products that may exert anti-inflammatory effects in vivo, we tested H. polygyrus excretory-secretory (HES) products, as well as a recombinantly expressed parasite protein, transforming growth factor mimic (TGM), that functionally mimics the mammalian immunomodulatory cytokine TGF-ß. HES and TGM showed a degree of protection in dextran sodium sulphate-induced colitis, with a reduction in inflammatory cytokines, but did not fully block the development of pathology. HES also showed little benefit in a similar acute trinitrobenzene sulphonic acid-induced model. However, in a T cell transfer-mediated model with recombination activation gene (RAG)-deficient mice, HES-reduced disease scores if administered throughout the first 2 or 4 weeks following transfer but was less effective if treatment was delayed until 14 days after T cell transfer. Recombinant TGM similarly dampened colitis in RAG-deficient recipients of effector T cells, and was effective even if introduced only once symptoms had begun to be manifest. These results are a promising indication that TGM may replicate, and even surpass, the modulatory properties of native parasite HES.

19.
Int J Parasitol ; 53(8): 393-403, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36931423

RESUMEN

How parasites develop and survive, and how they stimulate or modulate host immune responses are important in understanding disease pathology and for the design of new control strategies. Microarray analysis and bulk RNA sequencing have provided a wealth of data on gene expression as parasites develop through different life-cycle stages and on host cell responses to infection. These techniques have enabled gene expression in the whole organism or host tissue to be detailed, but do not take account of the heterogeneity between cells of different types or developmental stages, nor the spatial organisation of these cells. Single-cell RNA-seq (scRNA-seq) adds a new dimension to studying parasite biology and host immunity by enabling gene profiling at the individual cell level. Here we review the application of scRNA-seq to establish gene expression cell atlases for multicellular helminths and to explore the expansion and molecular profile of individual host cell types involved in parasite immunity and tissue repair. Studying host-parasite interactions in vivo is challenging and we conclude this review by briefly discussing the applications of organoids (stem-cell derived mini-tissues) to examine host-parasite interactions at the local level, and as a potential system to study parasite development in vitro. Organoid technology and its applications have developed rapidly, and the elegant studies performed to date support the use of organoids as an alternative in vitro system for research on helminth parasites.


Asunto(s)
Helmintos , Interacciones Huésped-Parásitos , Animales , Interacciones Huésped-Parásitos/genética , Helmintos/fisiología , Secuencia de Bases , Estadios del Ciclo de Vida
20.
J Extracell Vesicles ; 12(1): e12298, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36604533

RESUMEN

Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved.


Asunto(s)
Vesículas Extracelulares , Helmintos , Animales , Humanos , Vesículas Extracelulares/fisiología , Reproducibilidad de los Resultados , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA