Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Exp Bot ; 75(11): 3431-3451, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38520311

RESUMEN

Labdane-related diterpenoids (LRDs), a subgroup of terpenoids, exhibit structural diversity and significant commercial and pharmacological potential. LRDs share the characteristic decalin-labdanic core structure that derives from the cycloisomerization of geranylgeranyl diphosphate (GGPP). Labdanes derive their name from the oleoresin known as 'Labdanum', 'Ladano', or 'Aladano', used since ancient Greek times. Acetylated labdanes, rarely identified in plants, are associated with enhanced biological activities. Chemical analysis of Cistus creticus subsp. creticus revealed labda-7,13(E)-dien-15-yl acetate and labda-7,13(E)-dien-15-ol as major constituents. In addition, novel labdanes such as cis-abienol, neoabienol, ent-copalol, and one as yet unidentified labdane-type diterpenoid were detected for the first time. These compounds exhibit developmental regulation, with higher accumulation observed in young leaves. Using RNA-sequencing (RNA-seq) analysis of young leaf trichomes, it was possible to identify, clone, and eventually functionally characterize labdane-type diterpenoid synthase (diTPS) genes, encoding proteins responsible for the production of labda-7,13(E)-dien-15-yl diphosphate (endo-7,13-CPP), labda-7,13(E)-dien-15-yl acetate, and labda-13(E)-ene-8α-ol-15-yl acetate. Moreover, the reconstitution of labda-7,13(E)-dien-15-yl acetate and labda-13(E)-ene-8α-ol-15-yl acetate production in yeast is presented. Finally, the accumulation of LRDs in different plant tissues showed a correlation with the expression profiles of the corresponding genes.


Asunto(s)
Vías Biosintéticas , Cistus , Diterpenos , Hojas de la Planta , Tricomas , Diterpenos/metabolismo , Tricomas/metabolismo , Tricomas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Cistus/genética , Cistus/metabolismo , Transcriptoma , Acetilación , Perfilación de la Expresión Génica
2.
J Am Chem Soc ; 146(1): 801-810, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38129385

RESUMEN

Taxol is a potent drug used in various cancer treatments. Its complex structure has prompted extensive research into its biosynthesis. However, certain critical steps, such as the formation of the oxetane ring, which is essential for its activity, have remained unclear. Previous proposals suggested that oxetane formation follows the acetylation of taxadien-5α-ol. Here, we proposed that the oxetane ring is formed by cytochrome P450-mediated oxidation events that occur prior to C5 acetylation. To test this hypothesis, we analyzed the genomic and transcriptomic information for Taxus species to identify cytochrome P450 candidates and employed two independent systems, yeast (Saccharomyces cerevisiae) and plant (Nicotiana benthamiana), for their characterization. We revealed that a single enzyme, CYP725A4, catalyzes two successive epoxidation events, leading to the formation of the oxetane ring. We further showed that both taxa-4(5)-11(12)-diene (endotaxadiene) and taxa-4(20)-11(12)-diene (exotaxadiene) are precursors to the key intermediate, taxologenic oxetane, indicating the potential existence of multiple routes in the Taxol pathway. Thus, we unveiled a long-elusive step in Taxol biosynthesis.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Taxus , Sistema Enzimático del Citocromo P-450/metabolismo , Paclitaxel/metabolismo , Éteres Cíclicos , Catálisis , Taxus/genética , Taxus/metabolismo
3.
Microorganisms ; 11(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37317126

RESUMEN

Yarrowia lipolytica is a non-pathogenic aerobic yeast with numerous industrial biotechnology applications. The organism grows in a wide variety of media, industrial byproducts, and wastes. A need exists for molecular tools to improve heterologous protein expression and pathway reconstitution. In an effort to identify strong native promoters in glycerol-based media, six highly expressed genes were mined from public data, analyzed, and validated. The promoters from the three most highly expressed (H3, ACBP, and TMAL) were cloned upstream of the reporter mCherry in episomal and integrative vectors. Fluorescence was quantified by flow cytometry and promoter strength was benchmarked with known strong promoters (pFBA1in, pEXP1, and pTEF1in) in cells growing in glucose, glycerol, and synthetic glycerol media. The results show that pH3 > pTMAL > pACBP are very strong promoters, with pH3 exceeding all other tested promoters. Hybrid promoters were also constructed, linking the Upstream Activating Sequence 1B (UAS1B8) with H3(260) or TMAL(250) minimal promoters, and compared to the UAS1B8-TEF1(136) promoter. The new hybrid promoters exhibited far superior strength. The novel promoters were utilized to overexpress the lipase LIP2, achieving very high secretion levels. In conclusion, our research identified and characterized several strong Y. lipolytica promoters that expand the capacity to engineer Yarrowia strains and valorize industrial byproducts.

4.
Microb Cell Fact ; 22(1): 62, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37004109

RESUMEN

BACKGROUND: Yarrowia lipolytica is a well-studied oleaginous yeast known for its ability to accumulate and store intracellular lipids, while growing on diverse, non-conventional substrates. Amongst them, crude glycerol, a low-cost by-product of the biodiesel industry, appears to be an interesting option for scaling up a sustainable single-cell oil production process. Adaptive laboratory evolution (ALE) is a powerful tool to force metabolic adaptations endowing tolerance to stressful environmental conditions, generating superior phenotypes with industrial relevance. RESULTS: Y. lipolytica MUCL 28849 underwent ALE in a synthetic medium with increasing concentration of pure or crude glycerol as a stressing factor (9-20% v/v) for 520 generations. In one case of pure glycerol, chemical mutagenesis with ethyl methanesulfonate (EMS) was applied prior to ALE. Growth profile, biomass production and lipid content of 660 evolved strains (EVS), revealed 5 superior isolates; exhibiting from 1.9 to 3.6-fold increase of dry biomass and from 1.1 to 1.6-fold increase of lipid concentration compared to the parental strain, when grown in 15% v/v crude glycerol. NGS for differential gene expression analysis, showed induced expression in all EVS affecting nucleosomal structure and regulation of transcription. As strains differentiated, further changes accumulated in membrane transport and protein transport processes. Genes involved in glycerol catabolism and triacylglycerol biosynthesis were overexpressed in two EVS. Mismatches and gaps in the expressed sequences identified altered splicing and mutations in the EVS, with most of them, affecting different components of septin ring formation in the budding process. The selected YLE155 EVS, used for scale-up cultivation in a 3L benchtop bioreactor with 20% v/v crude glycerol, achieved extended exponential phase, twofold increase of dry biomass and lipid yields at 48 h, while citric acid secretion and glycerol consumption rates were 40% and 50% lower, respectively, compared to the parental strain, after 24 h of cultivation. CONCLUSION: ALE and EMS-ALE under increasing concentrations of pure or crude glycerol generated novel Y. lipolytica strains with enhanced biomass and lipid content. Differential gene expression analysis and scale-up of YLE155, illustrated the potential of the evolved strains to serve as suitable "chassis" for rational engineering approaches towards both increased lipid accumulation, and production of high-added value compounds, through efficient utilization of crude glycerol.


Asunto(s)
Glicerol , Yarrowia , Glicerol/metabolismo , Yarrowia/metabolismo , Reactores Biológicos , Mutación , Lípidos
5.
Blood Adv ; 6(8): 2646-2656, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35235952

RESUMEN

The TA-isoform of the p63 transcription factor (TAp63) has been reported to contribute to clinical aggressiveness in chronic lymphocytic leukemia (CLL) in a hitherto elusive way. Here, we sought to further understand and define the role of TAp63 in the pathophysiology of CLL. First, we found that elevated TAp63 expression levels are linked with adverse clinical outcomes, including disease relapse and shorter time-to-first treatment and overall survival. Next, prompted by the fact that TAp63 participates in an NF-κB/TAp63/BCL2 antiapoptotic axis in activated mature, normal B cells, we explored molecular links between TAp63 and BCL2 also in CLL. We documented a strong correlation at both the protein and the messenger RNA (mRNA) levels, alluding to the potential prosurvival role of TAp63. This claim was supported by inducible downregulation of TAp63 expression in the MEC1 CLL cell line using clustered regularly interspaced short palindromic repeats (CRISPR) system, which resulted in downregulation of BCL2 expression. Next, using chromatin immunoprecipitation (ChIP) sequencing, we examined whether BCL2 might constitute a transcriptional target of TAp63 and identified a significant binding profile of TAp63 in the BCL2 gene locus, across a genomic region previously characterized as a super enhancer in CLL. Moreover, we identified high-confidence TAp63 binding regions in genes mainly implicated in immune response and DNA-damage procedures. Finally, we found that upregulated TAp63 expression levels render CLL cells less responsive to apoptosis induction with the BCL2 inhibitor venetoclax. On these grounds, TAp63 appears to act as a positive modulator of BCL2, hence contributing to the antiapoptotic phenotype that underlies clinical aggressiveness and treatment resistance in CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Apoptosis/genética , Regulación de la Expresión Génica , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factores de Transcripción , Proteínas Supresoras de Tumor/metabolismo
6.
Blood Adv ; 5(13): 2788-2792, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34251413

RESUMEN

Recent studies of chronic lymphocytic leukemia (CLL) have reported recurrent mutations in the RPS15 gene, which encodes the ribosomal protein S15 (RPS15), a component of the 40S ribosomal subunit. Despite some evidence about the role of mutant RPS15 (mostly obtained from the analysis of cell lines), the precise impact of RPS15 mutations on the translational program in primary CLL cells remains largely unexplored. Here, using RNA sequencing and ribosome profiling, a technique that involves measuring translational efficiency, we sought to obtain global insight into changes in translation induced by RPS15 mutations in CLL cells. To this end, we evaluated primary CLL cells from patients with wild-type or mutant RPS15 as well as MEC1 CLL cells transfected with mutant or wild-type RPS15. Our data indicate that RPS15 mutations rewire the translation program of primary CLL cells by reducing their translational efficiency, an effect not seen in MEC1 cells. In detail, RPS15 mutant primary CLL cells displayed altered translation efficiency of other ribosomal proteins and regulatory elements that affect key cell processes, such as the translational machinery and immune signaling, as well as genes known to be implicated in CLL, hence highlighting a relevant role for RPS15 in the natural history of CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Mutación , ARN , Proteínas Ribosómicas/genética
7.
Microorganisms ; 9(6)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199815

RESUMEN

Recently, metal oxides and magnesium hydroxide nanoparticles (NPs) with high surface-to-volume ratios were shown to possess antibacterial properties with applications in biomedicine and agriculture. To assess recent observations from field trials on tomatoes showing resistance to pathogen attacks, porous micron-scale particles composed of nano-grains of MgO were hydrated and sprayed on the leaves of healthy tomato (Solanum lycopersicum) plants in a 20-day program. The results showed that the spray induced (a) a modest and selective stress gene response that was consistent with the absence of phytotoxicity and the production of salicylic acid as a signalling response to pathogens; (b) a shift of the phylloplane microbiota from near 100% dominance by Gram (-) bacteria, leaving extremophiles and cyanobacteria to cover the void; and (c) a response of the fungal leaf phylloplane that showed that the leaf epiphytome was unchanged but the fungal load was reduced by about 70%. The direct microbiome changes together with the low level priming of the plant's immune system may explain the previously observed resistance to pathogen assaults in field tomato plants sprayed with the same hydrated porous micron-scale particles.

8.
Mar Drugs ; 20(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35049887

RESUMEN

Nowadays, biofouling is responsible for enormous economic losses in the maritime sector, and its treatment with conventional antifouling paints is causing significant problems to the environment. Biomimetism and green chemistry approaches are very promising research strategies for the discovery of new antifouling compounds. This study focused on the red alga Sphaerococcus coronopifolius, which is known as a producer of bioactive secondary metabolites. Fifteen compounds, including bromosphaerol (1), were tested against key marine biofoulers (five marine bacteria and three microalgae) and two enzymes associated with the adhesion process in macroalgae and invertebrates. Each metabolite presented antifouling activity against at least one organism/enzyme. This investigation also revealed that two compounds, sphaerococcinol A (4) and 14R-hydroxy-13,14-dihydro-sphaerococcinol A (5), were the most potent compounds without toxicity towards oyster larvae used as non-target organisms. These compounds are of high potential as they are active towards key biofoulers and could be produced by a cultivable alga, a fact that is important from the green chemistry point of view.


Asunto(s)
Diterpenos/farmacología , Rhodophyta , Animales , Organismos Acuáticos , Incrustaciones Biológicas , Diterpenos/química , Tecnología Química Verde , Halogenación
9.
Microb Cell Fact ; 19(1): 15, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992268

RESUMEN

BACKGROUND: Celastrol is a promising anti-obesity agent that acts as a sensitizer of the protein hormone leptin. Despite its potent activity, a sustainable source of celastrol and celastrol derivatives for further pharmacological studies is lacking. RESULTS: To elucidate the celastrol biosynthetic pathway and reconstruct it in Saccharomyces cerevisiae, we mined a root-transcriptome of Tripterygium wilfordii and identified four oxidosqualene cyclases and 49 cytochrome P450s as candidates to be involved in the early steps of celastrol biosynthesis. Using functional screening of the candidate genes in Nicotiana benthamiana, TwOSC4 was characterized as a novel oxidosqualene cyclase that produces friedelin, the presumed triterpenoid backbone of celastrol. In addition, three P450s (CYP712K1, CYP712K2, and CYP712K3) that act downstream of TwOSC4 were found to effectively oxidize friedelin and form the likely celastrol biosynthesis intermediates 29-hydroxy-friedelin and polpunonic acid. To facilitate production of friedelin, the yeast strain AM254 was constructed by deleting UBC7, which afforded a fivefold increase in friedelin titer. This platform was further expanded with CYP712K1 to produce polpunonic acid and a method for the facile extraction of products from the yeast culture medium, resulting in polpunonic acid titers of 1.4 mg/L. CONCLUSION: Our study elucidates the early steps of celastrol biosynthesis and paves the way for future biotechnological production of this pharmacologically promising compound in engineered yeast strains.


Asunto(s)
Fármacos Antiobesidad/metabolismo , Biotecnología/métodos , Nicotiana/metabolismo , Tripterygium/metabolismo , Triterpenos/metabolismo , Clonación Molecular , Sistema Enzimático del Citocromo P-450/metabolismo , Triterpenos Pentacíclicos , Saccharomyces cerevisiae/genética , Terpenos/metabolismo
10.
Nat Commun ; 10(1): 3799, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444322

RESUMEN

Synthetic biology efforts for the production of valuable chemicals are frequently hindered by the structure and regulation of the native metabolic pathways of the chassis. This is particularly evident in the case of monoterpenoid production in Saccharomyces cerevisiae, where the canonical terpene precursor geranyl diphosphate is tightly coupled to the biosynthesis of isoprenoid compounds essential for yeast viability. Here, we establish a synthetic orthogonal monoterpenoid pathway based on an alternative precursor, neryl diphosphate. We identify structural determinants of isomeric substrate selectivity in monoterpene synthases and engineer five different enzymes to accept the alternative substrate with improved efficiency and specificity. We combine the engineered enzymes with dynamic regulation of metabolic flux to harness the potential of the orthogonal substrate and improve the production of industrially-relevant monoterpenes by several-fold compared to the canonical pathway. This approach highlights the introduction of synthetic metabolism as an effective strategy for high-value compound production.


Asunto(s)
Liasas Intramoleculares/genética , Ingeniería Metabólica , Monoterpenos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Vías Biosintéticas/genética , Liasas Intramoleculares/metabolismo , Isomerismo , Mutagénesis Sitio-Dirigida , Fosfatos de Poliisoprenilo/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato/genética , Biología Sintética
11.
New Phytol ; 222(1): 230-243, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30394540

RESUMEN

Diatoms are eukaryotic, unicellular algae that are responsible for c. 20% of the Earth's primary production. Their dominance and success in contemporary oceans have prompted investigations on their distinctive metabolism and physiology. One metabolic pathway that remains largely unexplored in diatoms is isoprenoid biosynthesis, which is responsible for the production of numerous molecules with unique features. We selected the diatom species Haslea ostrearia because of its characteristic isoprenoid content and carried out a comprehensive transcriptomic analysis and functional characterization of the genes identified. We functionally characterized one farnesyl diphosphate synthase, two geranylgeranyl diphosphate synthases, one short-chain polyprenyl synthase, one bifunctional isopentenyl diphosphate isomerase - squalene synthase, and one phytoene synthase. We inferred the phylogenetic origin of these genes and used a combination of functional analysis and subcellular localization predictions to propose their physiological roles. Our results provide insight into isoprenoid biosynthesis in H. ostrearia and propose a model of the central steps of the pathway. This model will facilitate the study of metabolic pathways of important isoprenoids in diatoms, including carotenoids, sterols and highly branched isoprenoids.


Asunto(s)
Diatomeas/metabolismo , Terpenos/metabolismo , Secuencia de Bases , Vías Biosintéticas/genética , Dimetilaliltranstransferasa/metabolismo , Perfilación de la Expresión Génica , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Licopeno/química , Licopeno/metabolismo , Modelos Biológicos , Filogenia , Fracciones Subcelulares/metabolismo
12.
Nat Chem Biol ; 14(12): 1090-1098, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30429605

RESUMEN

One application of synthetic biology is the redesign of existing biological systems to acquire new functions. In this context, expanding the chemical code underlying key biosynthetic pathways will lead to the synthesis of compounds with new structures and potentially new biological activities. Terpenoids are a large group of specialized metabolites with numerous applications. Yet, being synthesized from five-carbon units, they are restricted to distinct classes that differ by five carbon atoms (C10, C15, C20, etc.). To expand the diversity of terpenoid structures, we engineered yeast cells to synthesize a noncanonical building block with 11 carbons, and produced 40 C11 terpene scaffolds that can form the basis for an entire terpenoid class. By identifying a single-residue switch that converts C10 plant monoterpene synthases to C11-specific enzymes, we engineered dedicated synthases for C11 terpene production. This approach will enable the systematic expansion of the chemical space accessed by terpenoids.


Asunto(s)
Transferasas Alquil y Aril/genética , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Terpenos/síntesis química , Transferasas Alquil y Aril/metabolismo , Cianobacterias/enzimología , Cianobacterias/genética , Difosfatos/metabolismo , Diterpenos/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Biología Sintética/métodos , Terpenos/metabolismo
13.
Sci Rep ; 7(1): 8855, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28821847

RESUMEN

Plants synthesize numerous specialized metabolites (also termed natural products) to mediate dynamic interactions with their surroundings. The complexity of plant specialized metabolism is the result of an inherent biosynthetic plasticity rooted in the substrate and product promiscuity of the enzymes involved. The pathway of carnosic acid-related diterpenes in rosemary and sage involves promiscuous cytochrome P450s whose combined activity results in a multitude of structurally related compounds. Some of these minor products, such as pisiferic acid and salviol, have established bioactivity, but their limited availability prevents further evaluation. Reconstructing carnosic acid biosynthesis in yeast achieved significant titers of the main compound but could not specifically yield the minor products. Specific production of pisiferic acid and salviol was achieved by restricting the promiscuity of a key enzyme, CYP76AH24, through a single-residue substitution (F112L). Coupled with additional metabolic engineering interventions, overall improvements of 24 and 14-fold for pisiferic acid and salviol, respectively, were obtained. These results provide an example of how synthetic biology can help navigating the complex landscape of plant natural product biosynthesis to achieve heterologous production of useful minor metabolites. In the context of plant adaptation, these findings also suggest a molecular basis for the rapid evolution of terpene biosynthetic pathways.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Diterpenos/metabolismo , Levaduras/metabolismo , Abietanos/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Diterpenos/química , Ingeniería Genética , Variación Genética , Genotipo , Redes y Vías Metabólicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Oncotarget ; 7(24): 35946-35959, 2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-27191993

RESUMEN

The histone methyltransferase EZH2 induces gene repression through trimethylation of histone H3 at lysine 27 (H3K27me3). EZH2 overexpression has been reported in many types of cancer and associated with poor prognosis. Here we investigated the expression and functionality of EZH2 in chronic lymphocytic leukemia (CLL). Aggressive cases with unmutated IGHV genes (U-CLL) displayed significantly higher EZH2 expression compared to indolent CLL cases with mutated IGHV genes (M-CLL); furthermore, in U-CLL EZH2 expression was upregulated with disease progression. Within U-CLL, EZH2high cases harbored significantly fewer (p = 0.033) TP53 gene abnormalities compared to EZH2low cases. EZH2high cases displayed high H3K27me3 levels and increased viability suggesting that EZH2 is functional and likely confers a survival advantage to CLL cells. This argument was further supported by siRNA-mediated downmodulation of EZH2 which resulted in increased apoptosis. Notably, at the intraclonal level, cell proliferation was significantly associated with EZH2 expression. Treatment of primary CLL cells with EZH2 inhibitors induced downregulation of H3K27me3 levels leading to increased cell apoptosis. In conclusion, EZH2 is overexpressed in adverse-prognosis CLL and associated with increased cell survival and proliferation. Pharmacologic inhibition of EZH2 catalytic activity promotes apoptosis, highlighting EZH2 as a novel potential therapeutic target for specific subgroups of patients with CLL.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Leucemia Linfocítica Crónica de Células B/genética , Anciano , Supervivencia Celular/genética , Células Cultivadas , Progresión de la Enfermedad , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Histonas/metabolismo , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Estimación de Kaplan-Meier , Leucemia Linfocítica Crónica de Células B/enzimología , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Metilación , Persona de Mediana Edad , Mutación , Pronóstico , Proteína p53 Supresora de Tumor/genética
15.
Proc Natl Acad Sci U S A ; 113(13): 3681-6, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26976595

RESUMEN

Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial "chassis" have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to facilitate elucidation of plant biosynthetic pathways has been underexplored. Here we report on the application of a modular terpene production platform in the characterization of the biosynthetic pathway leading to the potent antioxidant carnosic acid and related diterpenes in Salvia pomifera and Rosmarinus officinalis.Four cytochrome P450 enzymes are identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8), the combined activities of which account for all of the oxidation events leading to the biosynthesis of the major diterpenes produced in these plants. This approach develops yeast as an efficient tool to harness the biotechnological potential of the numerous sequencing datasets that are increasingly becoming available through transcriptomic or genomic studies.


Asunto(s)
Abietanos/biosíntesis , Abietanos/química , Antioxidantes/química , Antioxidantes/metabolismo , Vías Biosintéticas , Biotecnología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Ingeniería Metabólica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rosmarinus/genética , Rosmarinus/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Salvia/genética , Salvia/metabolismo , Biología Sintética/métodos
16.
Microb Cell Fact ; 15: 46, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26920948

RESUMEN

BACKGROUND: Several plant diterpenes have important biological properties. Among them, forskolin is a complex labdane-type diterpene whose biological activity stems from its ability to activate adenylyl cyclase and to elevate intracellular cAMP levels. As such, it is used in the control of blood pressure, in the protection from congestive heart failure, and in weight-loss supplements. Chemical synthesis of forskolin is challenging, and production of forskolin in engineered microbes could provide a sustainable source. To this end, we set out to establish a platform for the production of forskolin and related epoxy-labdanes in yeast. RESULTS: Since the forskolin biosynthetic pathway has only been partially elucidated, and enzymes involved in terpene biosynthesis frequently exhibit relaxed substrate specificity, we explored the possibility of reconstructing missing steps of this pathway employing surrogate enzymes. Using CYP76AH24, a Salvia pomifera cytochrome P450 responsible for the oxidation of C-12 and C-11 of the abietane skeleton en route to carnosic acid, we were able to produce the forskolin precursor 11ß-hydroxy-manoyl oxide in yeast. To improve 11ß-hydroxy-manoyl oxide production, we undertook a chassis engineering effort involving the combination of three heterozygous yeast gene deletions (mct1/MCT1, whi2/WHI2, gdh1/GDH1) and obtained a 9.5-fold increase in 11ß-hydroxy-manoyl oxide titers, reaching 21.2 mg L(-1). CONCLUSIONS: In this study, we identify a surrogate enzyme for the specific and efficient hydroxylation of manoyl oxide at position C-11ß and establish a platform that will facilitate the synthesis of a broad range of tricyclic (8,13)-epoxy-labdanes in yeast. This platform forms a basis for the heterologous production of forskolin and will facilitate the elucidation of subsequent steps of forskolin biosynthesis. In addition, this study highlights the usefulness of using surrogate enzymes for the production of intermediates of complex biosynthetic pathways. The combination of heterozygous deletions and the improved yeast strain reported here will provide a useful tool for the production of numerous other isoprenoids.


Asunto(s)
Colforsina/metabolismo , Diterpenos/metabolismo , Saccharomyces cerevisiae/enzimología , Abietanos/biosíntesis , Abietanos/química , Transferasas Alquil y Aril/metabolismo , Vías Biosintéticas , Colforsina/química , Diterpenos/química , Cinética , Ácido Mevalónico/química , Ácido Mevalónico/metabolismo , Oxidación-Reducción , Especificidad por Sustrato , Terpenos/química , Terpenos/metabolismo
17.
BMC Genomics ; 16: 935, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-26572682

RESUMEN

BACKGROUND: Salvia diterpenes have been found to have health promoting properties. Among them, carnosic acid and carnosol, tanshinones and sclareol are well known for their cardiovascular, antitumor, antiinflammatory and antioxidant activities. However, many of these compounds are not available at a constant supply and developing biotechnological methods for their production could provide a sustainable alternative. The transcriptome of S.pomifera glandular trichomes was analysed aiming to identify genes that could be used in the engineering of synthetic microbial systems. RESULTS: In the present study, a thorough metabolite analysis of S. pomifera leaves led to the isolation and structure elucidation of carnosic acid-family metabolites including one new natural product. These labdane diterpenes seem to be synthesized through miltiradiene and ferruginol. Transcriptomic analysis of the glandular trichomes from the S. pomifera leaves revealed two genes likely involved in miltiradiene synthesis. Their products were identified and the corresponding enzymes were characterized as copalyl diphosphate synthase (SpCDS) and miltiradiene synthase (SpMilS). In addition, several CYP-encoding transcripts were identified providing a valuable resource for the identification of the biosynthetic mechanism responsible for the production of carnosic acid-family metabolites in S. pomifera. CONCLUSIONS: Our work has uncovered the key enzymes involved in miltiradiene biosynthesis in S. pomifera leaf glandular trichomes. The transcriptomic dataset obtained provides a valuable tool for the identification of the CYPs involved in the synthesis of carnosic acid-family metabolites.


Asunto(s)
Metaboloma/genética , Salvia/genética , Terpenos/metabolismo , Transcriptoma/genética , Tricomas/genética , Sistema Enzimático del Citocromo P-450/clasificación , Sistema Enzimático del Citocromo P-450/genética , Diterpenos/metabolismo , Anotación de Secuencia Molecular , Estructura Molecular , Hojas de la Planta/metabolismo , Salvia/metabolismo , Terpenos/química
18.
BMC Genomics ; 16: 504, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26149407

RESUMEN

BACKGROUND: Solanum elaeagnifolium, an invasive weed of the Solanaceae family, is poorly studied although it poses a significant threat to crops. Here the analysis of the transcriptome of S. elaeagnifolium is presented, as a means to explore the biology of this species and to identify genes related to its adaptation to environmental stress. One of the basic mechanisms by which plants respond to environmental stress is through the synthesis of specific secondary metabolites that protect the plant from herbivores and microorganisms, or serve as signaling molecules. One important such group of secondary metabolites are terpenes. RESULTS: By next-generation sequencing, the flower/leaf transcriptome of S. elaeagnifolium was sequenced and de novo assembled into 75,618 unigenes. Among the unigenes identified, several corresponded to genes involved in terpene biosynthesis; these included terpene synthases (TPSs) and genes of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways. Functional characterization of two of the TPSs showed that one produced the sesquiterpene (E)-caryophyllene and the second produced the monoterpene camphene. Analysis of wounded S. elaeagnifolium leaves has shown significant increase of the concentration of (E)-caryophyllene and geranyl linalool, two terpenes implicated in stress responses. The increased production of (E)-caryophyllene was matched to the induced expression of the corresponding TPS gene. Wounding also led to the increased expression of the putative 1-deoxy-D-xylulose-5-phosphate synthase 2 (DXS2) gene, a key enzyme of the MEP pathway, corroborating the overall increased output of terpene biosynthesis. CONCLUSIONS: The reported S. elaeagnifolium de novo transcriptome provides a valuable sequence database that could facilitate study of this invasive weed and contribute to our understanding of the highly diverse Solanaceae family. Analysis of genes and pathways involved in the plant's interaction with the environment will help to elucidate the mechanisms that underly the intricate features of this unique Solanum species.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta/genética , Solanum/genética , Terpenos/metabolismo , Transcriptoma/genética , Heridas y Lesiones/genética , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Monoterpenos Bicíclicos , Flores/genética , Flores/metabolismo , Perfilación de la Expresión Génica/métodos , Datos de Secuencia Molecular , Monoterpenos/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Plata/metabolismo , Solanum/metabolismo , Estrés Fisiológico/genética
19.
PLoS One ; 10(5): e0124106, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26020634

RESUMEN

Carnosic acid (CA) is a phenolic diterpene with anti-tumour, anti-diabetic, antibacterial and neuroprotective properties that is produced by a number of species from several genera of the Lamiaceae family, including Salvia fruticosa (Cretan sage) and Rosmarinus officinalis (Rosemary). To elucidate CA biosynthesis, glandular trichome transcriptome data of S. fruticosa were mined for terpene synthase genes. Two putative diterpene synthase genes, namely SfCPS and SfKSL, showing similarities to copalyl diphosphate synthase and kaurene synthase-like genes, respectively, were isolated and functionally characterized. Recombinant expression in Escherichia coli followed by in vitro enzyme activity assays confirmed that SfCPS is a copalyl diphosphate synthase. Coupling of SfCPS with SfKSL, both in vitro and in yeast, resulted in the synthesis miltiradiene, as confirmed by 1D and 2D NMR analyses (1H, 13C, DEPT, COSY H-H, HMQC and HMBC). Coupled transient in vivo assays of SfCPS and SfKSL in Nicotiana benthamiana further confirmed production of miltiradiene in planta. To elucidate the subsequent biosynthetic step, RNA-Seq data of S. fruticosa and R. officinalis were searched for cytochrome P450 (CYP) encoding genes potentially involved in the synthesis of the first phenolic compound in the CA pathway, ferruginol. Three candidate genes were selected, SfFS, RoFS1 and RoFS2. Using yeast and N. benthamiana expression systems, all three where confirmed to be coding for ferruginol synthases, thus revealing the enzymatic activities responsible for the first three steps leading to CA in two Lamiaceae genera.


Asunto(s)
Abietanos/biosíntesis , Proteínas de Plantas/genética , Rosmarinus/enzimología , Salvia/enzimología , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Clonación Molecular , Perfilación de la Expresión Génica , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Rosmarinus/genética , Salvia/genética , Análisis de Secuencia de ARN
20.
Microb Cell Fact ; 14: 60, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25903744

RESUMEN

BACKGROUND: Terpenoids (isoprenoids) have numerous applications in flavors, fragrances, drugs and biofuels. The number of microbially produced terpenoids is increasing as new biosynthetic pathways are being elucidated. However, efforts to improve terpenoid production in yeast have mostly taken advantage of existing knowledge of the sterol biosynthetic pathway, while many additional factors may affect the output of the engineered system. RESULTS: Aiming to develop a yeast strain that can support high titers of sclareol, a diterpene of great importance for the perfume industry, we sought to identify gene deletions that improved carotenoid, and thus potentially sclareol, production. Using a carotenogenic screen, the best 100 deletion mutants, out of 4,700 mutant strains, were selected to create a subset for further analysis. To identify combinations of deletions that cooperate to further boost production, iterative carotenogenic screens were applied, and each time the top performing gene deletions were further ranked according to the number of genetic and physical interactions known for each specific gene. The gene selected in each round was deleted and the resulting strain was employed in a new round of selection. This approach led to the development of an EG60 derived haploid strain combining six deletions (rox1, dos2, yer134c, vba5, ynr063w and ygr259c) and exhibiting a 40-fold increase in carotenoid and 12-fold increase in sclareol titers, reaching 750 mg/L sclareol in shake flask cultivation. CONCLUSION: Using an iterative approach, we identified novel combinations of yeast gene deletions that improve carotenoid and sclareol production titers without compromising strain growth and viability. Most of the identified deletions have not previously been implicated in sterol pathway control. Applying the same approach using a different starting point could yield alternative sets of deletions with similar or improved outcome.


Asunto(s)
Carotenoides/metabolismo , Diterpenos/metabolismo , Ergosterol/biosíntesis , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Ergosterol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA