Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Commun Biol ; 7(1): 448, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605243

RESUMEN

Carotenoids are hydrophobic pigments binding to diverse carotenoproteins, many of which remain unexplored. Focusing on yellow gregarious locusts accumulating cuticular carotenoids, here we use engineered Escherichia coli cells to reconstitute a functional water-soluble ß-carotene-binding protein, BBP. HPLC and Raman spectroscopy confirmed that recombinant BBP avidly binds ß-carotene, inducing the unusual vibronic structure of its absorbance spectrum, just like native BBP extracted from the locust cuticles. Bound to recombinant BBP, ß-carotene exhibits pronounced circular dichroism and allows BBP to withstand heating (T0.5 = 68 °C), detergents and pH variations. Using bacteria producing distinct xanthophylls we demonstrate that, while ß-carotene is the preferred carotenoid, BBP can also extract from membranes ketocarotenoids and, very poorly, hydroxycarotenoids. We show that BBP-carotenoid complex reversibly binds to chitin, but not to chitosan, implying the role for chitin acetyl groups in cuticular BBP deposition. Reconstructing such locust coloration mechanism in vitro paves the way for structural studies and BBP applications.


Asunto(s)
Saltamontes , beta Caroteno , Animales , Saltamontes/metabolismo , Carotenoides/metabolismo , Xantófilas , Quitina
2.
Biochim Biophys Acta Bioenerg ; 1865(3): 149043, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38522658

RESUMEN

Carotenoids perform multifaceted roles in life ranging from coloration over light harvesting to photoprotection. The Orange Carotenoid Protein (OCP), a light-driven photoswitch involved in cyanobacterial photoprotection, accommodates a ketocarotenoid vital for its function. OCP extracts its ketocarotenoid directly from membranes, or accepts it from homologs of its C-terminal domain (CTDH). The CTDH from Anabaena (AnaCTDH) was shown to be important for carotenoid transfer and delivery from/to membranes. The C-terminal tail of AnaCTDH is a critical structural element likely serving as a gatekeeper and facilitator of carotenoid uptake from membranes. We investigated the impact of amino acid substitutions within the AnaCTDH-CTT on echinenone and canthaxanthin uptake from DOPC and DMPG liposomes. The transfer rate was uniformly reduced for substitutions of Arg-137 and Arg-138 to Gln or Ala, and depended on the lipid type, indicating a weaker interaction particularly with the lipid head group. Our results further suggest that Glu-132 has a membrane-anchoring effect on the PC lipids, specifically at the choline motif as inferred from the strongly different effects of the CTT variants on the extraction from the two liposome types. The substitution of Pro-130 by Gly suggests that the CTT is perpendicular to both the membrane and the main AnaCTDH protein during carotenoid extraction. Finally, the simultaneous mutation of Leu-133, Leu-134 and Leu-136 for alanines showed that the hydrophobicity of the CTT is crucial for carotenoid uptake. Since some substitutions accelerated carotenoid transfer into AnaCTDH while others slowed it down, carotenoprotein properties can be engineered toward the requirements of applications.

3.
Photosynth Res ; 159(2-3): 97-114, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37093504

RESUMEN

Flavodiiron proteins Flv1/Flv3 accept electrons from photosystem (PS) I. In this work we investigated light adaptation mechanisms of Flv1-deficient mutant of Synechocystis PCC 6803, incapable to form the Flv1/Flv3 heterodimer. First seconds of dark-light transition were studied by parallel measurements of light-induced changes in chlorophyll fluorescence, P700 redox transformations, fluorescence emission at 77 K, and OCP-dependent fluorescence quenching. During the period of Calvin cycle activation upon dark-light transition, the linear electron transport (LET) in wild type is supported by the Flv1/Flv3 heterodimer, whereas in Δflv1 mutant activation of LET upon illumination is preceded by cyclic electron flow that maintains State 2. The State 2-State 1 transition and Orange Carotenoid Protein (OCP)-dependent non-photochemical quenching occur independently of each other, begin in about 10 s after the illumination of the cells and are accompanied by a short-term re-reduction of the PSI reaction center (P700+). ApcD is important for the State 2-State 1 transition in the Δflv1 mutant, but S-M rise in chlorophyll fluorescence was not completely inhibited in Δflv1/ΔapcD mutant. LET in Δflv1 mutant starts earlier than the S-M rise in chlorophyll fluorescence, and the oxidation of plastoquinol (PQH2) pool promotes the activation of PSII, transient re-reduction of P700+ and transition to State 1. An attempt to induce state transition in the wild type under high intensity light using methyl viologen, highly oxidizing P700 and PQH2, was unsuccessful, showing that oxidation of intersystem electron-transport carriers might be insufficient for the induction of State 2-State 1 transition in wild type of Synechocystis under high light.


Asunto(s)
Synechocystis , Transporte de Electrón , Synechocystis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación , Oxidación-Reducción , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo
4.
Int J Biol Macromol ; 254(Pt 2): 127874, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939760

RESUMEN

The Orange Carotenoid Protein (OCP) is a unique photoreceptor crucial for cyanobacterial photoprotection. Best studied Synechocystis sp. PCC 6803 OCP belongs to the large OCP1 family. Downregulated by the Fluorescence Recovery Protein (FRP) in low-light, high-light-activated OCP1 binds to the phycobilisomes and performs non-photochemical quenching. Recently discovered families OCP2 and OCP3 remain structurally and functionally underexplored, and no systematic comparative studies have ever been conducted. Here we present two first crystal structures of OCP2 from morphoecophysiologically different cyanobacteria and provide their comprehensive structural, spectroscopic and functional comparison with OCP1, the recently described OCP3 and all-OCP ancestor. Structures enable correlation of spectroscopic signatures with the effective number of hydrogen and discovered here chalcogen bonds anchoring the ketocarotenoid in OCP, as well as with the rotation of the echinenone's ß-ionone ring in the CTD. Structural data also helped rationalize the observed differences in OCP/FRP and OCP/phycobilisome functional interactions. These data are expected to foster OCP research and applications in optogenetics, targeted carotenoid delivery and cyanobacterial biomass engineering.


Asunto(s)
Proteínas Bacterianas , Synechocystis , Proteínas Bacterianas/química , Synechocystis/metabolismo , Análisis Espectral , Carotenoides/química , Ficobilisomas/química
5.
Protein Sci ; 33(1): e4851, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38038877

RESUMEN

Flavins such as flavin mononucleotide or flavin adenine dinucleotide are bound by diverse proteins, yet have very similar spectra when in the oxidized state. Recently, we developed new variants of flavin-binding protein CagFbFP exhibiting notable blue (Q148V) or red (I52V A85Q) shifts of fluorescence emission maxima. Here, we use time-resolved and low-temperature spectroscopy to show that whereas the chromophore environment is static in Q148V, an additional protein-flavin hydrogen bond is formed upon photoexcitation in the I52V A85Q variant. Consequently, in Q148V, excitation, emission, and phosphorescence spectra are shifted, whereas in I52V A85Q, excitation and low-temperature phosphorescence spectra are relatively unchanged, while emission spectrum is altered. We also determine the x-ray structures of the two variants to reveal the flavin environment and complement the spectroscopy data. Our findings illustrate two distinct color-tuning mechanisms of flavin-binding proteins and could be helpful for the engineering of new variants with improved optical properties.


Asunto(s)
Flavina-Adenina Dinucleótido , Flavoproteínas , Flavoproteínas/genética , Flavoproteínas/química , Temperatura , Análisis Espectral , Flavina-Adenina Dinucleótido/química , Mononucleótido de Flavina/química
6.
Biochim Biophys Acta Bioenerg ; 1865(1): 149014, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739300

RESUMEN

Phycobilisomes (PBSs) are giant water-soluble light-harvesting complexes of cyanobacteria and red algae, consisting of hundreds of phycobiliproteins precisely organized to deliver the energy of absorbed light to chlorophyll chromophores of the photosynthetic electron-transport chain. Quenching the excess of excitation energy is necessary for the photoprotection of photosynthetic apparatus. In cyanobacteria, quenching of PBS excitation is provided by the Orange Carotenoid Protein (OCP), which is activated under high light conditions. In this work, we describe parameters of anti-Stokes fluorescence of cyanobacterial PBSs in quenched and unquenched states. We compare the fluorescence readout from entire phycobilisomes and their fragments. The obtained results revealed the heterogeneity of conformations of chromophores in isolated phycobiliproteins, while such heterogeneity was not observed in the entire PBS. Under excitation by low-energy quanta, we did not detect a significant uphill energy transfer from the core to the peripheral rods of PBS, while the one from the terminal emitters to the bulk allophycocyanin chromophores is highly probable. We show that this direction of energy migration does not eliminate fluorescence quenching in the complex with OCP. Thus, long-wave excitation provides new insights into the pathways of energy conversion in the phycobilisome.


Asunto(s)
Cianobacterias , Ficobilisomas , Ficobilisomas/metabolismo , Proteínas Bacterianas/metabolismo , Fotosíntesis , Cianobacterias/metabolismo , Espectrometría de Fluorescencia/métodos
7.
Biochim Biophys Acta Biomembr ; 1866(1): 184241, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37866690

RESUMEN

Carotenoids are pigments of diverse functions ranging from coloration over light-harvesting to photoprotection. Yet, the number of carotenoid-binding proteins, which mobilize these pigments in physiological media, is limited, and the mechanisms of carotenoid mobilization are still not well understood. The same applies for the determinants of carotenoid uptake from membranes into carotenoproteins, especially regarding the dependence on the chemical properties of membrane lipids. Here, we investigate xanthophyll uptake capacity and kinetics of a paradigmatic carotenoid-binding protein, the homolog of the Orange Carotenoid Protein's C-terminal domain from Anabaena sp. PCC 7120 (AnaCTDH), using liposomes formed from defined lipid species and loaded with canthaxanthin (CAN) and echinenone (ECN), respectively. Phospholipids with different chain length and degree of saturation were investigated. The composition of carotenoid-loaded liposomes directly affected the incorporation yield and storage ratio of CAN and ECN as well as the rate of carotenoid uptake by AnaCTDH. Generally, saturated PC lipids were identified as unsuitable, and a high phase transition temperature of the lipids negatively affected the carotenoid incorporation and storage yield. For efficient carotenoid transfer, the velocity increases with increasing chain length or membrane thickness. An average transfer yield of 93 % and 43 % were obtained for the formation of AnaCTDH(CAN) and AnaCTDH(ECN) holoproteins, respectively. In summary, the most suitable lipids for the formation of AnaCTDH(CAN/ECN) holoproteins by carotenoid transfer from artificial liposomes are phosphatidylcholine (18:1) and phosphatidylglycerol (14:0). Thus, these two lipids provide the best conditions for further investigation of lipid-protein interaction and the carotenoid uptake process.


Asunto(s)
Carotenoides , Liposomas , Liposomas/química , Carotenoides/metabolismo , Xantófilas/química , Xantófilas/metabolismo , Luteína/química , Cantaxantina , Lípidos de la Membrana/metabolismo
8.
Biochem Biophys Res Commun ; 683: 149119, 2023 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-37862781

RESUMEN

The Orange Carotenoid Protein (OCP) regulates cyanobacterial photosynthetic activity through photoactivation in intense light. A hydrogen bonding network involving the keto-carotenoid oxygen and Y201 and W288 residues prevents the spontaneous activation of dark-adapted OCP. To investigate the role of the hydrogen bonds in OCP photocycling, we introduced non-canonical amino acids near the keto-carotenoid, particularly iodine at the meta-position of Y201. This modification significantly increased the yield of red OCP photoproducts, albeit with a shorter lifetime. Changes in tryptophan fluorescence during photocycling influenced by the presence of iodine near W288 revealed interactions between Y201 and W288 in the absence of the carotenoid in the C-domain. We propose that upon the relaxation of red states, a ternary complex with the carotenoid is formed. Analysis of spectral signatures and interaction energies indicates that the specific iodo-tyrosine configuration enhances interactions between the carotenoid and W288.


Asunto(s)
Yodo , Triptófano , Aminoácidos , Enlace de Hidrógeno , Proteínas Bacterianas/metabolismo , Fluorescencia , Luz , Carotenoides/metabolismo
9.
Commun Biol ; 6(1): 471, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117801

RESUMEN

Fasciclins (FAS1) are ancient adhesion protein domains with no common small ligand binding reported. A unique microalgal FAS1-containing astaxanthin (AXT)-binding protein (AstaP) binds a broad repertoire of carotenoids by a largely unknown mechanism. Here, we explain the ligand promiscuity of AstaP-orange1 (AstaPo1) by determining its NMR structure in complex with AXT and validating this structure by SAXS, calorimetry, optical spectroscopy and mutagenesis. α1-α2 helices of the AstaPo1 FAS1 domain embrace the carotenoid polyene like a jaw, forming a hydrophobic tunnel, too short to cap the AXT ß-ionone rings and dictate specificity. AXT-contacting AstaPo1 residues exhibit different conservation in AstaPs with the tentative carotenoid-binding function and in FAS1 proteins generally, which supports the idea of AstaP neofunctionalization within green algae. Intriguingly, a cyanobacterial homolog with a similar domain structure cannot bind carotenoids under identical conditions. These structure-activity relationships provide the first step towards the sequence-based prediction of the carotenoid-binding FAS1 members.


Asunto(s)
Proteínas Portadoras , Moléculas de Adhesión Celular , Ligandos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Moléculas de Adhesión Celular/metabolismo , Carotenoides/metabolismo
10.
J Phys Chem B ; 127(9): 1890-1900, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36799909

RESUMEN

Most cyanobacteria utilize a water-soluble Orange Carotenoid Protein (OCP) to protect their light-harvesting complexes from photodamage. The Fluorescence Recovery Protein (FRP) is used to restore photosynthetic activity by inactivating OCP via dynamic OCP-FRP interactions, a multistage process that remains underexplored. In this work, applying time-resolved spectroscopy, we demonstrate that the interaction of FRP with the photoactivated OCP begins early in the photocycle. Interacting with the compact OCP state, FRP completely prevents the possibility of OCP domain separation and formation of the signaling state capable of interacting with the antenna. The structural element that prevents FRP binding and formation of the complex is the short α-helix at the beginning of the N-terminal domain of OCP, which masks the primary site in the C-terminal domain of OCP. We determined the rate of opening of this site and show that it remains exposed long after the relaxation of the red OCP states. Observations of the OCP transitions on the ms time scale revealed that the relaxation of the orange photocycle intermediates is accompanied by an increase in the interaction of the carotenoid keto group with the hydrogen bond donor tyrosine-201. Our data refine the current model of photoinduced OCP transitions and the interaction of its intermediates with FRP.


Asunto(s)
Proteínas Bacterianas , Cianobacterias , Proteínas Bacterianas/química , Cianobacterias/metabolismo , Análisis Espectral , Transducción de Señal , Carotenoides/química , Ficobilisomas/química
11.
Front Mol Biosci ; 10: 1072606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776742

RESUMEN

Introduction: Dissecting the intricate networks of covalent and non-covalent interactions that stabilize complex protein structures is notoriously difficult and requires subtle atomic-level exchanges to precisely affect local chemical functionality. The function of the Orange Carotenoid Protein (OCP), a light-driven photoswitch involved in cyanobacterial photoprotection, depends strongly on two H-bonds between the 4-ketolated xanthophyll cofactor and two highly conserved residues in the C-terminal domain (Trp288 and Tyr201). Method: By orthogonal translation, we replaced Trp288 in Synechocystis OCP with 3-benzothienyl-L-alanine (BTA), thereby exchanging the imino nitrogen for a sulphur atom. Results: Although the high-resolution (1.8 Å) crystal structure of the fully photoactive OCP-W288_BTA protein showed perfect isomorphism to the native structure, the spectroscopic and kinetic properties changed distinctly. We accurately parameterized the effects of the absence of a single H-bond on the spectroscopic and thermodynamic properties of OCP photoconversion and reveal general principles underlying the design of photoreceptors by natural evolution. Discussion: Such "molecular surgery" is superior over trial-and-error methods in hypothesis-driven research of complex chemical systems.

12.
J Phys Chem B ; 127(9): 1901-1913, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36815674

RESUMEN

We used small-angle neutron scattering partially coupled with size-exclusion chromatography to unravel the solution structures of two variants of the Orange Carotenoid Protein (OCP) lacking the N-terminal extension (OCP-ΔNTE) and its complex formation with the Fluorescence Recovery Protein (FRP). The dark-adapted, orange form OCP-ΔNTEO is fully photoswitchable and preferentially binds the pigment echinenone. Its complex with FRP consists of a monomeric OCP component, which closely resembles the compact structure expected for the OCP ground state, OCPO. In contrast, the pink form OCP-ΔNTEP, preferentially binding the pigment canthaxanthin, is mostly nonswitchable. The pink OCP form appears to occur as a dimer and is characterized by a separation of the N- and C-terminal domains, with the canthaxanthin embedded only into the N-terminal domain. Therefore, OCP-ΔNTEP can be viewed as a prototypical model system for the active, spectrally red-shifted state of OCP, OCPR. The dimeric structure of OCP-ΔNTEP is retained in its complex with FRP. Small-angle neutron scattering using partially deuterated OCP-FRP complexes reveals that FRP undergoes significant structural changes upon complex formation with OCP. The observed structures are assigned to individual intermediates of the OCP photocycle in the presence of FRP.


Asunto(s)
Proteínas Bacterianas , Cianobacterias , Proteínas Bacterianas/química , Cantaxantina , Dispersión del Ángulo Pequeño , Cianobacterias/metabolismo , Modelos Biológicos
13.
Antioxidants (Basel) ; 12(2)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36829973

RESUMEN

Lipofuscin of retinal pigment epithelium (RPE) cells is a complex heterogeneous system of chromophores which accumulates as granules during the cell's lifespan. Lipofuscin serves as a source of various cytotoxic effects linked with oxidative stress. Several age-related eye diseases such as macular degeneration of the retina, as well as some severe inherited eye pathologies, are accompanied by a significant increase in lipofuscin granule concentration. The accumulation of carotenoids in the RPE could provide an effective antioxidant protection against lipofuscin cytotoxic manifestations. Given the highly lipophilic nature of carotenoids, their targeted delivery to the vulnerable tissues can potentially be assisted by special proteins. In this study, we demonstrate how protein-mediated delivery of zeaxanthin using water-soluble Bombyx mori carotenoid-binding protein (BmCBP-ZEA) suppresses the photoinducible oxidative stress in RPE cells caused by irradiation of lipofuscin with intense white light. We implemented fluorescence lifetime imaging of the RPE cell culture ARPE-19 fed with lipofuscin granules and then irradiated by white light with and without the addition of BmCBP-ZEA. We demonstrate that after irradiation the mean fluorescence lifetime of lipofuscin significantly increases, while the presence of BmCBP-ZEA at 200 nM concentration suppresses the increase in the average lifetime of lipofuscin fluorescence, indicating an approx. 35% inhibition of the oxidative stress. This phenomenon serves as indirect yet important evidence of the efficiency of the protein-mediated carotenoid delivery into pigment epithelium cells.

14.
ACS Sens ; 8(2): 619-629, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36662613

RESUMEN

DNA-intercalated motifs (iMs) are facile scaffolds for the design of various pH-responsive nanomachines, including biocompatible pH sensors. First, DNA pH sensors relied on complex intermolecular scaffolds. Here, we used a simple unimolecular dual-labeled iM scaffold and minimized it by replacing the redundant loop nucleosides with abasic or alkyl linkers. These modifications improved the thermal stability of the iM and increased the rates of its pH-induced conformational transitions. The best effects were obtained upon the replacement of all three native loops with short and flexible linkers, such as the propyl one. The resulting sensor showed a pH transition value equal to 6.9 ± 0.1 and responded rapidly to minor acidification (tau1/2 <1 s for 7.2 → 6.6 pH jump). We demonstrated the applicability of this sensor for pH measurements in the nuclei of human lung adenocarcinoma cells (pH = 7.4 ± 0.2) and immortalized embryonic kidney cells (pH = 7.0 ± 0.2). The sensor stained diffusely the nucleoplasm and piled up in interchromatin granules. These findings highlight the prospects of iMs in the studies of normal and pathological pH-dependent processes in the nucleus, including the formation of biomolecular condensates.


Asunto(s)
Núcleo Celular , ADN , Humanos , Concentración de Iones de Hidrógeno , ADN/química , Cuerpos Nucleares
15.
Photosynth Res ; 156(1): 3-17, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36063303

RESUMEN

Our analysis of the X-ray crystal structure of canthaxanthin (CAN) showed that its ketolated ß-ionone rings can adopt two energetically equal, but structurally distinct puckers. Quantum chemistry calculations revealed that the potential energy surface of the ß-ionone ring rotation over the plane of the conjugated π-system in carotenoids depends on the pucker state of the ß-ring. Considering different pucker states and ß-ionone ring rotation, we found six separate local minima on the potential energy surface defining the geometry of the keto-ß-ionone ring-two cis and one trans orientation for each of two pucker states. We observed a small difference in energy and no difference in relative orientation for the cis-minima, but a pronounced difference for the position of trans-minimum in alternative pucker configurations. An energetic advantage of ß-ionone ring rotation from a specific pucker type can reach up to 8 kJ/mol ([Formula: see text]). In addition, we performed the simulation of linear absorption of CAN in hexane and in a unit cell of the CAN crystal. The electronic energies of [Formula: see text] transition were estimated both for the CAN monomer and in the CAN crystal. The difference between them reached [Formula: see text], which roughly corresponds to the energy gap between A and B pucker states predicted by theoretical estimations. Finally, we have discussed the importance of such effects for biological systems whose local environment determines conformational mobility, and optical/functional characteristics of carotenoid.


Asunto(s)
Carotenoides , Norisoprenoides , Carotenoides/química , Norisoprenoides/química , Conformación Molecular , Cantaxantina
16.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36555408

RESUMEN

Red blood cell (RBC) aggregation and deformation are governed by the molecular processes occurring on the membrane. Since several social important diseases are accompanied by alterations in RBC aggregation and deformability, it is important to develop a diagnostic parameter of RBC membrane structural integrity and stability. In this work, we propose membrane microviscosity assessed by time-resolved fluorescence anisotropy of the lipophilic PKH26 fluorescent probe as a diagnostic parameter. We measured the fluorescence decay curves of the PKH26 probe in the RBC membrane to establish the optimal parameters of the developed fluorescence assay. We observed a complex biphasic profile of the fluorescence anisotropy decay characterized by two correlation times corresponding to the rotational diffusion of free PKH26, and membrane-bounded molecules of the probe. The developed assay allowed us to estimate membrane microviscosity ηm in the range of 100-500 cP depending on the temperature, which paves the way for assessing RBC membrane properties in clinical applications as predictors of blood microrheological abnormalities.


Asunto(s)
Membrana Eritrocítica , Compuestos Orgánicos , Viscosidad , Polarización de Fluorescencia , Membrana Celular
17.
Int J Biol Macromol ; 223(Pt A): 1381-1393, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36395947

RESUMEN

Found in many organisms, water-soluble carotenoproteins are prospective antioxidant nanocarriers for biomedical applications. Yet, the toolkit of characterized carotenoproteins is rather limited: such proteins are either too specific binders of only few different carotenoids, or their ability to transfer carotenoids to various acceptor systems is unknown. Here, by focusing on a recently characterized recombinant ~27-kDa Carotenoid-Binding Protein from Bombyx mori (BmCBP) [Slonimskiy et al., International Journal of Biological Macromolecules 214 (2022): 664-671], we analyze its carotenoid-binding repertoire and potential as a carotenoid delivery module. We show that BmCBP forms productive complexes with both hydroxyl- and ketocarotenoids - lutein, zeaxanthin, astaxanthin, canthaxanthin and a smaller antioxidant, aporhodoxanthinone, but not with ß-carotene or retinal, which defines its broad ligand specificity toward xanthophylls valuable to human health. Moreover, the His-tagged BmCBP apoform is capable of cost-efficient and scalable enrichment of xanthophylls from various crude methanolic herbal extracts. Upon carotenoid binding, BmCBP remains monomeric and shows a remarkable ability to dynamically shuttle carotenoids to biological membrane models and to unrelated carotenoproteins, which in particular makes from the cyanobacterial Orange Carotenoid Protein a blue-light controlled photoswitch. Furthermore, administration of BmCBP loaded by zeaxanthin stimulates fibroblast growth, which is attractive for cell- and tissue-based assays.


Asunto(s)
Bombyx , Animales , Humanos , Bombyx/metabolismo , Estudios Prospectivos , Carotenoides/química , Luteína/química , Zeaxantinas/metabolismo , Antioxidantes , Proteínas de Transporte de Membrana
18.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361706

RESUMEN

The real-time monitoring of the intracellular pH in live cells with high precision represents an important methodological challenge. Although genetically encoded fluorescent indicators can be considered as a probe of choice for such measurements, they are hindered mostly by the inability to determine an absolute pH value and/or a narrow dynamic range of the signal, making them inefficient for recording the small pH changes that typically occur within cellular organelles. Here, we study the pH sensitivity of a green-fluorescence-protein (GFP)-based emitter (EGFP-Y145L/S205V) with the alkaline-shifted chromophore's pKa and demonstrate that, in the pH range of 7.5-9.0, its fluorescence lifetime changes by a factor of ~3.5 in a quasi-linear manner in mammalian cells. Considering the relatively strong lifetime response in a narrow pH range, we proposed the mitochondria, which are known to have a weakly alkaline milieu, as a target for live-cell pH measurements. Using fluorescence lifetime imaging microscopy (FLIM) to visualize the HEK293T cells expressing mitochondrially targeted EGFP-Y145L/S205V, we succeeded in determining the absolute pH value of the mitochondria and recorded the ETC-uncoupler-stimulated pH shift with a precision of 0.1 unit. We thus show that a single GFP with alkaline-shifted pKa can act as a high-precision indicator that can be used in a specific pH range.


Asunto(s)
Colorantes , Colorantes Fluorescentes , Animales , Humanos , Fluorescencia , Células HEK293 , Proteínas Fluorescentes Verdes/genética , Microscopía Fluorescente/métodos , Concentración de Iones de Hidrógeno , Mamíferos
19.
Structure ; 30(12): 1647-1659.e4, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356587

RESUMEN

STARD3, a steroidogenic acute regulatory lipid transfer protein, was identified as a key xanthophyll-binding protein in the human retina. STARD3 and its homologs in invertebrates are known to bind and transport carotenoids, but this lacks structural elucidation. Here, we report high-resolution crystal structures of the apo- and zeaxanthin (ZEA)-bound carotenoid-binding protein from silkworm Bombyx mori (BmCBP). Having a STARD3-like fold, BmCBP features novel elements, including the Ω1-loop that, in the apoform, is uniquely fixed on the α4-helix by an R173-D279 salt bridge. We exploit absorbance, Raman and dichroism spectroscopy, and calorimetry to describe how ZEA and BmCBP mutually affect each other in the complex. We identify key carotenoid-binding residues, confirm their roles by ZEA-binding capacity and X-ray structures of BmCBP mutants, and also demonstrate that markedly different carotenoid-binding capacities of BmCBP and human STARD3 stem from differences in the structural organization of their carotenoid-binding cavity.


Asunto(s)
Bombyx , Luteína , Animales , Humanos , Zeaxantinas/metabolismo , Luteína/química , Luteína/metabolismo , Proteínas Portadoras/química , Bombyx/metabolismo , Carotenoides/metabolismo
20.
Membranes (Basel) ; 12(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36295665

RESUMEN

Carotenoids are potent antioxidants with a wide range of biomedical applications. However, their delivery into human cells is challenging and relatively inefficient. While the use of natural water-soluble carotenoproteins capable to reversibly bind carotenoids and transfer them into membranes is promising, the quantitative estimation of the delivery remains unclear. In the present work, we studied echinenone (ECN) delivery by cyanobacterial carotenoprotein AnaCTDH (C-terminal domain homolog of the Orange Carotenoid Protein from Anabaena), into liposome membranes labelled with BODIPY fluorescent probe. We observed that addition of AnaCTDH-ECN to liposomes led to the significant changes in the fast-kinetic component of the fluorescence decay curve, pointing on the dipole-dipole interactions between the probe and ECN within the membrane. It may serve as an indirect evidence of ECN delivery into membrane. To study the delivery in detail, we carried out molecular dynamics modeling of the localization of ECN within the lipid bilayer and calculate its orientation factor. Next, we exploited FRET to assess concentration of ECN delivered by AnaCTDH. Finally, we used time-resolved fluorescence anisotropy to assess changes in microviscosity of liposomal membranes. Incorporation of liposomes with ß-carotene increased membrane microviscosity while the effect of astaxanthin and its mono- and diester forms was less pronounced. At temperatures below 30 °C addition of AnaCTDH-ECN increased membrane microviscosity in a concentration-dependent manner, supporting the protein-mediated carotenoid delivery mechanism. Combining all data, we propose FRET-based analysis and assessment of membrane microviscosity as potent approaches to characterize the efficiency of carotenoids delivery into membranes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA