RESUMEN
Waste from the agri-food chain represents a valuable reservoir of organic compounds with health-promoting properties. Momast Plus 30 Bio (MP30B) is a derivative obtained from olive-oil wastewater. Its enrichment in hydroxytyrosol (HT) via a patented technique has paved the way for its potential application as a dietary supplement in preventing cardiovascular diseases. MP30B demonstrates no significant alteration in cardiac and vascular parameters in "ex vivo" studies. However, it exhibits a strong ability to remove reactive oxygen species and exerts anti-inflammatory effects, notably reducing the concentration of iNOS and mitigating heart infections in "in vitro" experiments. Furthermore, MP30B slightly decreases the stiffness of the "ex vivo" thoracic aorta, potentially resulting in lowered arterial pressure and enhanced energy transfer to a normal ventricle. Based on these findings, we posit MP30B as a promising extract for cardiovascular disease prevention, and its specific antibacterial properties suggest its utility in preventing cardiac infections.
Asunto(s)
Enfermedades Cardiovasculares , Olea , Aguas Residuales , Aguas Residuales/química , Enfermedades Cardiovasculares/prevención & control , Olea/química , Humanos , Aceite de Oliva/química , Animales , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Suplementos Dietéticos , Residuos Industriales/análisis , Antiinflamatorios/farmacologíaRESUMEN
Neuroinflammation is a critical aspect of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This study investigates the anti-neuroinflammatory properties of oleocanthal and its oxidation product, oleocanthalic acid, using the BV-2 cell line activated with lipopolysaccharide. Our findings revealed that oleocanthal significantly inhibited the production of pro-inflammatory cytokines and reduced the expression of inflammatory genes, counteracted oxidative stress induced by lipopolysaccharide, and increased cell phagocytic activity. Conversely, oleocanthalic acid was not able to counteract lipopolysaccharide-induced activation. The docking analysis revealed a plausible interaction of oleocanthal, with both CD14 and MD-2 leading to a potential interference with TLR4 signaling. Since our data show that oleocanthal only partially reduces the lipopolysaccharide-induced activation of NF-kB, its action as a TLR4 antagonist alone cannot explain its remarkable effect against neuroinflammation. Proteomic analysis revealed that oleocanthal counteracts the LPS modulation of 31 proteins, including significant targets such as gelsolin, clathrin, ACOD1, and four different isoforms of 14-3-3 protein, indicating new potential molecular targets of the compound. In conclusion, oleocanthal, but not oleocanthalic acid, mitigates neuroinflammation through multiple mechanisms, highlighting a pleiotropic action that is particularly important in the context of neurodegeneration.
RESUMEN
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease. Recently approved molecular/gene treatments do not solve the downstream inflammation-linked pathophysiological issues such that supportive therapies are required to improve therapeutic efficacy and patients' quality of life. Over the years, a plethora of bioactive natural compounds have been used for human healthcare. Among them, plumbagin, a plant-derived analog of vitamin K3, has shown interesting potential to counteract chronic inflammation with potential therapeutic significance. In this work we evaluated the effects of plumbagin on DMD by delivering it as an oral supplement within food to dystrophic mutant of the fruit fly Drosophila melanogaster and mdx mice. In both DMD models, plumbagin show no relevant adverse effect. In terms of efficacy plumbagin improved the climbing ability of the dystrophic flies and their muscle morphology also reducing oxidative stress in muscles. In mdx mice, plumbagin enhanced the running performance on the treadmill and the muscle strength along with muscle morphology. The molecular mechanism underpinning these actions was found to be the activation of nuclear factor erythroid 2-related factor 2 pathway, the re-establishment of redox homeostasis and the reduction of inflammation thus generating a more favorable environment for skeletal muscles regeneration after damage. Our data provide evidence that food supplementation with plumbagin modulates the main, evolutionary conserved, mechanistic pathophysiological hallmarks of dystrophy, thus improving muscle function in vivo; the use of plumbagin as a therapeutic in humans should thus be explored further.
RESUMEN
Dietary intervention is considered a safe preventive strategy to slow down aging. This study aimed to evaluate the protective effects of a commercially available supplement and six simpler formulations against DNA damage in 3D human keratinocytes. The ingredients used are well known and were combined into various formulations to test their potential anti-aging properties. Firstly, we determined the formulations' safe concentration by evaluating cytotoxicity and cell viability through spectrophotometric assays. We then examined the presence of tumor p53 binding protein 1 and phosphorylated histone H2AX foci, which are markers of genotoxicity. The foci count revealed that a 24-h treatment with the supplement did not induce DNA damage, and significantly reduced DNA damage in cells exposed to neocarzinostatin for 2 h. Three of the simpler formulations showed similar results. Moreover, the antioxidant activity was tested using a recently developed whole cell-based chemiluminescent bioassay; results showed that a 24-h treatment with the supplement and three simpler formulations significantly reduced intracellular H2O2 after pro-oxidant injury, thus suggesting their possible antiaging effect. This study's originality lies in the use of a 3D human keratinocyte cell model and a combination of natural ingredients targeting DNA damage and oxidative stress, providing a robust evaluation of their anti-aging potential.
Asunto(s)
Antioxidantes , Daño del ADN , Suplementos Dietéticos , Queratinocitos , Estrés Oxidativo , Envejecimiento de la Piel , Humanos , Queratinocitos/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Envejecimiento de la Piel/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Histonas/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Peróxido de Hidrógeno/farmacologíaRESUMEN
BACKGROUND: Recent trials of anti-amyloid-ß (Aß) monoclonal antibodies, including lecanemab and donanemab, in early Alzheimer disease (AD) showed that these drugs have limited clinical benefits and their use comes with a significant risk of serious adverse events. Thus, it seems crucial to explore complementary therapeutic approaches. Genome-wide association studies identified robust associations between AD and several AD risk genes related to immune response, including but not restricted to CD33 and TREM2. Here, we critically reviewed the current knowledge on candidate neuroinflammatory biomarkers and their role in characterizing the pathophysiology of AD. MAIN BODY: Neuroinflammation is recognized to be a crucial and contributing component of AD pathogenesis. The fact that neuroinflammation is most likely present from earliest pre-stages of AD and co-occurs with the deposition of Aß reinforces the need to precisely define the sequence and nature of neuroinflammatory events. Numerous clinical trials involving anti-inflammatory drugs previously yielded unfavorable outcomes in early and mild-to-moderate AD. Although the reasons behind these failures remain unclear, these may include the time and the target selected for intervention. Indeed, in our review, we observed a stage-dependent neuroinflammatory process in the AD brain. While the initial activation of glial cells counteracts early brain Aß deposition, the downregulation in the functional state of microglia occurs at more advanced disease stages. To address this issue, personalized neuroinflammatory modulation therapy is required. The emergence of reliable blood-based neuroinflammatory biomarkers, particularly glial fibrillary acidic protein, a marker of reactive astrocytes, may facilitate the classification of AD patients based on the ATI(N) biomarker framework. This expands upon the traditional classification of Aß ("A"), tau ("T"), and neurodegeneration ("N"), by incorporating a novel inflammatory component ("I"). CONCLUSIONS: The present review outlines the current knowledge on potential neuroinflammatory biomarkers and, importantly, emphasizes the role of longitudinal analyses, which are needed to accurately monitor the dynamics of cerebral inflammation. Such a precise information on time and place will be required before anti-inflammatory therapeutic interventions can be considered for clinical evaluation. We propose that an effective anti-neuroinflammatory therapy should specifically target microglia and astrocytes, while considering the individual ATI(N) status of patients.
Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Biomarcadores/metabolismo , Animales , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Medicina de Precisión/métodosRESUMEN
Neuroinflammation, which is mainly triggered by microglia, is a key contributor to multiple neurodegenerative diseases. Natural products, and in particular Cannabis sativa L., due to its richness in phytochemical components, represent ideal candidates to counteract neuroinflammation. We previously characterized different C. sativa commercial varieties which showed significantly different chemical profiles. On these bases, the aim of this study was to evaluate essential oils and aqueous distillation residues from the inflorescences of three different hemp varieties for their anti-neuroinflammatory activity in BV-2 microglial cells. Cells were pretreated with aqueous residues or essential oils and then activated with LPS. Unlike essential oils, aqueous residues showed negligible effects in terms of anti-inflammatory activity. Among the essential oils, the one obtained from 'Gorilla Glue' was the most effective in inhibiting pro-inflammatory mediators and in upregulating anti-inflammatory ones through the modulation of the p38 MAPK/NF-κB pathway. Moreover, the sesquiterpenes (E)-caryophyllene, α-humulene, and caryophyllene oxide were identified as the main contributors to the essential oils' anti-inflammatory activity. To our knowledge, the anti-neuroinflammatory activity of α-humulene has not been previously described. In conclusion, our work shows that C. sativa essential oils characterized by high levels of sesquiterpenes can be promising candidates in the prevention/counteraction of neuroinflammation.
Asunto(s)
Cannabis , Aceites Volátiles , Sesquiterpenos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Cannabis/química , Enfermedades Neuroinflamatorias , Destilación , Sesquiterpenos/farmacología , Antiinflamatorios/farmacología , FN-kappa B/farmacología , Microglía , Lipopolisacáridos/farmacologíaRESUMEN
Autoimmune thyroid diseases are on the rise worldwide, and such a rapid increase is mainly driven by environmental factors related to changed lifestyles in "modern" societies. In this context, diet seems to play a crucial role. An unhealthy high-energy diet, rich in animal fat and proteins, salt and refined sugars (the so-called "Western diet") negatively influences the risk of autoimmunity by altering the immune balance and the gut microbiota composition, enhancing oxidative stress and promoting inflammation. In contrast, the Mediterranean diet represents a unique model of healthy eating, characterized by a high intake of food from vegetable sources, a low consumption of saturated fats in favor of unsaturated fats (mainly, olive oil), a moderate consumption of fish (typically, the small oily fishes) and dairy products, as well as a moderate consumption of wine at meals, and a low intake of meat. Thanks to its nutritional components, the Mediterranean Diet positively influences immune system function, gut microbiota composition, and redox homeostasis, exerting anti-oxidants, anti-inflammatory, and immunomodulatory effects. The present review was aimed at exploring the existing knowledge on the correlations between dietary habits and thyroid autoimmunity, to evaluate the role of the Mediterranean diet as a protective model.
RESUMEN
Castanea sativa is very common in Italy, and the large amount of waste material generated during chestnut processing has a high environmental impact. Several studies demonstrated that chestnut by-products are a good source of bioactive compounds, mainly endowed with antioxidant properties. This study further investigates the anti-neuroinflammatory effect of chestnut leaf and spiny bur extracts, together with the deepest phytochemical characterisation (by NMR and MS) of active biomolecules contained in leaf extracts, which resulted in being more effective than spiny bur ones. BV-2 microglial cells stimulated with lipopolysaccharide (LPS) were used as a model of neuroinflammation. In BV-2 cells pre-treated with chestnut extracts, LPS signalling is partially blocked via the reduced expression of TLR4 and CD14 as well as the expression of LPS-induced inflammatory markers. Leaf extract fractions revealed the presence of specific flavonoids, such as isorhamnetin glucoside, astragalin, myricitrin, kaempferol 3-rhamnosyl (1-6)(2â³-trans-p-coumaroyl)hexoside, tiliroside and unsaturated fatty acids, all of which could be responsible for the observed anti-neuroinflammatory effects. Interestingly, the kaempferol derivative has been identified in chestnut for the first time. In conclusion, the exploitation of chestnut by-products is suitable for the achievement of two goals: satisfaction of consumers' demand for new, natural bio-active compounds and valorisation of by-products.
RESUMEN
Endothelial damage is recognized as the initial step that precedes several cardiovascular diseases (CVD), such as atherosclerosis, hypertension, and coronary artery disease. It has been demonstrated that the best treatment for CVD is prevention, and, in the frame of a healthy lifestyle, the consumption of vegetables, rich in bioactive molecules, appears effective at reducing the risk of CVD. In this context, the large amount of agri-food industry waste, considered a global problem due to its environmental and economic impact, represents an unexplored source of bioactive compounds. This review provides a summary regarding the possible exploitation of waste or by-products derived by the processing of three traditional Italian crops-apple, pear, and sugar beet-as a source of bioactive molecules to protect endothelial function. Particular attention has been given to the bioactive chemical profile of these pomaces and their efficacy in various pathological conditions related to endothelial dysfunction. The waste matrices of apple, pear, and sugar beet crops can represent promising starting material for producing "upcycled" products with functional applications, such as the prevention of endothelial dysfunction linked to cardiovascular diseases.
RESUMEN
The aim of this study is to advance means for microalgae dewatering with the simultaneous reuse of water as new cultivation medium, specifically through ceramic membrane filtration. Three algae, namely, Spirulina platensis, Scenedesmus obliquus, and Chlorella sorokiniana were tested by filtering suspensions with four ceramic membranes having nominal pore sizes of 0.8 µm, 0.14 µm, 300 kDa, 15 kDa. The observed flux values and organic matter removal rates were related to the membrane pore size and cake layer properties, with some differences in productivity between algae types, likely due to cell size and shape. Interestingly, similar near steady-state fluxes (70-120 L m-2h-1) were measured using membranes with nominal pore size above 15 kDa, suggesting the dominance of cake layer filtration independently of the initial flux. Virtually complete algae cells rejections and high nutrient passage (>75%) were observed in all combinations. When the permeate streams were used as media for new growth cycles of the various algae, no or little growth was observed with Spirulina p., while Chlorella s. (permeate from 300 kDa membrane) and especially Scenedesmus o. (permeate from 0.14 µm membrane) showed the fastest growth rates, almost comparable to those observed with ideal fresh media.
Asunto(s)
Chlorella , Microalgas , Biomasa , Cerámica , Filtración , AguaRESUMEN
Neurodegenerative diseases, characterized by progressive loss in selected areas of the nervous system, are becoming increasingly prevalent worldwide due to an aging population. Despite their diverse clinical manifestations, neurodegenerative diseases are multifactorial disorders with standard features and mechanisms such as abnormal protein aggregation, mitochondrial dysfunction, oxidative stress and inflammation. As there are no effective treatments to counteract neurodegenerative diseases, increasing interest has been directed to the potential neuroprotective activities of plant-derived compounds found abundantly in food and in agrifood by-products. Food waste has an extremely negative impact on the environment, and recycling is needed to promote their disposal and overcome this problem. Many studies have been carried out to develop green and effective strategies to extract bioactive compounds from food by-products, such as peel, leaves, seeds, bran, kernel, pomace, and oil cake, and to investigate their biological activity. In this review, we focused on the potential neuroprotective activity of agrifood wastes obtained by common products widely produced and consumed in Italy, such as grapes, coffee, tomatoes, olives, chestnuts, onions, apples, and pomegranates.
RESUMEN
Although it is clearly established that the abuse of alcohol is seriously harmful to health, much epidemiological and clinical evidence seem to underline the protective role of moderate quantities of alcohol and in particular of wine on health. This narrative review aims to re-evaluate the relationship between the type and dose of alcoholic drink and reduced or increased risk of various diseases, in the light of the most current scientific evidence. In particular, in vitro studies on the modulation of biochemical pathways and gene expression of wine bioactive components were evaluated. Twenty-four studies were selected after PubMed, Scopus and Google Scholar searches for the evaluation of moderate alcohol/wine consumption and health effects: eight studies concerned cardiovascular diseases, three concerned type 2 diabetes, four concerned neurodegenerative diseases, five concerned cancer and four were related to longevity. A brief discussion on viticultural and enological practices potentially affecting the content of bioactive components in wine is included. The analysis clearly indicates that wine differs from other alcoholic beverages and its moderate consumption not only does not increase the risk of chronic degenerative diseases but is also associated with health benefits particularly when included in a Mediterranean diet model. Obviously, every effort must be made to promote behavioral education to prevent abuse, especially among young people.
Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Vino , Humanos , Adolescente , Vino/análisis , Bebidas Alcohólicas/efectos adversos , Bebidas Alcohólicas/análisis , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Etanol/análisis , Consumo de Bebidas Alcohólicas/efectos adversosRESUMEN
Skeletal muscle regeneration is a complex process involving crosstalk between immune cells and myogenic precursor cells, i.e., satellite cells. In this scenario, macrophage recruitment in damaged muscles is a mandatory step for tissue repair since pro-inflammatory M1 macrophages promote the activation of satellite cells, stimulating their proliferation and then, after switching into anti-inflammatory M2 macrophages, they prompt satellite cells' differentiation into myotubes and resolve inflammation. Here, we show that acid sphingomyelinase (ASMase), a key enzyme in sphingolipid metabolism, is activated after skeletal muscle injury induced in vivo by the injection of cardiotoxin. ASMase ablation shortens the early phases of skeletal muscle regeneration without affecting satellite cell behavior. Of interest, ASMase regulates the balance between M1 and M2 macrophages in the injured muscles so that the absence of the enzyme reduces inflammation. The analysis of macrophage populations indicates that these events depend on the altered polarization of M1 macrophages towards an M2 phenotype. Our results unravel a novel role of ASMase in regulating immune response during muscle regeneration/repair and suggest ASMase as a supplemental therapeutic target in conditions of redundant inflammation that impairs muscle recovery.
Asunto(s)
Macrófagos/metabolismo , Macrófagos/patología , Músculo Esquelético/fisiología , Regeneración/fisiología , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Diferenciación Celular , Polaridad Celular , Proliferación Celular , Activación Enzimática , Inflamación/patología , Ratones Noqueados , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Fenotipo , Células Satélite del Músculo Esquelético/metabolismo , Transducción de Señal , Esfingomielina Fosfodiesterasa/deficienciaRESUMEN
The multifactorial nature of Alzheimer's disease (AD) is a reason for the lack of effective drugs as well as a basis for the development of "multi-target-directed ligands" (MTDLs). As cases increase in developing countries, there is a need of new drugs that are not only effective but also accessible. With this motivation, we report the first sustainable MTDLs, derived from cashew nutshell liquid (CNSL), an inexpensive food waste with anti-inflammatory properties. We applied a framework combination of functionalized CNSL components and well-established acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) tacrine templates. MTDLs were selected based on hepatic, neuronal, and microglial cell toxicity. Enzymatic studies disclosed potent and selective AChE/BChE inhibitors (5, 6, and 12), with subnanomolar activities. The X-ray crystal structure of 5 complexed with BChE allowed rationalizing the observed activity (0.0352 nM). Investigation in BV-2 microglial cells revealed antineuroinflammatory and neuroprotective activities for 5 and 6 (already at 0.01 µM), confirming the design rationale.
Asunto(s)
Ligandos , Fármacos Neuroprotectores/química , Extractos Vegetales/química , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Anacardium/química , Anacardium/metabolismo , Sitios de Unión , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Dominio Catalítico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Diseño de Fármacos , Humanos , Lipopolisacáridos/farmacología , Microglía/citología , Microglía/efectos de los fármacos , Microglía/metabolismo , Simulación de Dinámica Molecular , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Nueces/química , Nueces/metabolismo , Relación Estructura-Actividad , Tacrina/química , Tacrina/metabolismoRESUMEN
Background: There is a growing awareness that nutritional habits may influence risk of several inflammatory and immune-mediated disorders, including autoimmune diseases, through various mechanisms. The aim of the present study was to investigate dietary habits and their relationship with redox homeostasis in the setting of thyroid autoimmunity. Materials and Methods: Two hundred subjects (173 females and 27 males; median age, 37 years) were enrolled. None were under any pharmacological treatment. Exclusion criteria were any infectious/inflammatory/autoimmune comorbidity, kidney failure, diabetes, and cancer. In each subject, serum thyrotropin (TSH), free thyroxine, antithyroid antibodies, and circulating oxidative stress markers were measured. A questionnaire on dietary habits, evaluating the intake frequencies of food groups and adherence to the Mediterranean diet, was submitted to each participant. Results: Among the 200 recruited subjects, 81 (71 females and 10 males) were diagnosed with euthyroid Hashimoto's thyroiditis (HT); the remaining 119 (102 females and 17 males) served as controls. In questionnaires, HT subjects reported higher intake frequencies of animal foods (meat, p = 0.0001; fish, p = 0.0001; dairy products, p = 0.004) compared with controls, who reported higher intake frequencies of plant foods (legumes, p = 0.001; fruits and vegetables, p = 0.030; nuts, p = 0.0005). The number of subjects who preferentially consumed poultry instead of red/processed meat was lower in HT subjects than in controls (p = 0.0141). In logistic regression analysis, meat consumption was associated with increased odds ratio of developing thyroid autoimmunity, while the Mediterranean diet traits were protective. In HT subjects, serum advanced glycation end products (markers of oxidative stress) were significantly higher (p = 0.0001) than in controls, while the activity of glutathione peroxidase and thioredoxin reductase, as well as total plasma antioxidant activity, were lower (p = 0.020, p = 0.023, and p = 0.002, respectively), indicating a condition of oxidative stress. Stepwise regression models demonstrated a significant dependence of oxidative stress parameters on consumption of animal foods, mainly meat. Conclusions: The present study suggests a protective effect of low intake of animal foods toward thyroid autoimmunity and a positive influence of such nutritional patterns on redox balance and potentially on oxidative stress-related disorders.
Asunto(s)
Dieta Saludable , Dieta Mediterránea , Conducta Alimentaria , Enfermedad de Hashimoto/metabolismo , Estrés Oxidativo , Adolescente , Adulto , Anciano , Biomarcadores/sangre , Estudios de Casos y Controles , Femenino , Enfermedad de Hashimoto/sangre , Enfermedad de Hashimoto/diagnóstico , Enfermedad de Hashimoto/prevención & control , Humanos , Masculino , Persona de Mediana Edad , Estado Nutricional , Valor Nutritivo , Oxidación-Reducción , Factores Protectores , Medición de Riesgo , Factores de Riesgo , Adulto JovenRESUMEN
(1) Background: It is recommended that an athlete, in order to ensure correct nutrition and performance, should consume between 1.2 and 2.0 g/kg/day of protein, while the daily recommended protein intake for a non-athlete is 0.8and 0.9 mg/kg/day. It is unclear if athletes living in Mediterranean countries are able to meet protein requirements without supplementation, since Mediterranean diet de-emphasizes meat and meat products. (2) Methods: 166 athletes (125 males) enrolled between 2017 and 2019 were required to keep a dietary journal for three consecutive days (2 workdays and 1 weekend day). Athletes had to be >18 years old, train in a particular sport activity more than 3 h a week and compete at least at an amateur level. Journal data were collected and then translated into macro-nutrient content (grams of protein, carbohydrates, and lipids) by a nutritionist. (3) Results: The protein intake reported by this specific population vary slightly from the Academy of Nutrition and Dietetics (AND), Dietitians of Canada (DC), and the American College of Sports Medicine (ACSM) joint statement recommendation level. Average protein levels without protein supplementation fell within the protein guidelines. Counterintuitively, the intake among those who supplemented their diet with protein was higher compared with those who did not, even when excluding the contribution of supplements. Although the majority of subjects participating in the study were able to meet protein intake recommended for athletes without protein supplementation, 27% of athletes were below the guideline range. (4) Conclusions: these data suggest that athletes' nutrition should be more often evaluated by a nutritionist and that they will benefit from increasing their nutritional knowledge in order to make better food choices, resorting to protein supplementation only when effectively needed.
Asunto(s)
Atletas , Dieta Mediterránea , Proteínas en la Dieta/administración & dosificación , Suplementos Dietéticos , Deportes , Peso Corporal , Registros de Dieta , Ingestión de Alimentos , Ingestión de Energía , Femenino , Humanos , Italia , Masculino , Necesidades Nutricionales , Estado Nutricional , Acondicionamiento Físico Humano , Ingesta Diaria Recomendada , Adulto JovenRESUMEN
It's a frightening time due to COVID-19, but the great elderly/centenarians, apparently with more frailty, seem to have a better response to the pandemic. "The South Italy" lifestyle seems an "effective strategy" promoting the well-being embedded in a holistic solution: healthy diet, less exposure to PM10 pollution, protected environment, and moderate physical activity. The European FP7 Project RISTOMED results, since 2010, have shown that dietary intervention improved a heathy status in the elderly people. Based on the RISTOMED results, in addition to sociocultural and environmental factors, the authors suggest an integrated approach for resilience to COVID-19. Such an approach during the next months could make the difference for the success of any government progress policy to fight COVID-19, finalizing long-term well-being and successful aging.
Asunto(s)
Envejecimiento , Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/prevención & control , Dieta Mediterránea , Estilo de Vida , Pandemias/prevención & control , Neumonía Viral/prevención & control , Anciano , Concienciación , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Humanos , Italia/epidemiología , Neumonía Viral/epidemiología , Neumonía Viral/virología , SARS-CoV-2 , Estrés PsicológicoRESUMEN
Castanea sativa cultivation has been present in Mediterranean regions since ancient times. In order to promote a circular economy, it is of great importance to valorize chestnut groves' by-products. In this study, leaves and spiny burs from twenty-four Castanea trees were analyzed by 1H NMR metabolomics to provide an overview of their phytochemical profile. The Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) performed on these data allowed us to distinguish 'Marrone' from 'Castagna', since the latter were generally more enriched with secondary metabolites, in particular, flavonoids (astragalin, isorhamnetin glucoside, and myricitrin) were dominant. Knowing that microglia are involved in mediating the oxidative and inflammatory response of the central nervous system, the potential anti-inflammatory effects of extracts derived from leaves and spiny burs were evaluated in a neuroinflammatory cell model: BV-2 microglia cells. The tested extracts showed cytoprotective activity (at 0.1 and 0.5 mg/mL) after inflammation induction by 5 µg/mL lipopolysaccharide (LPS). In addition, the transcriptional levels of IL-1ß, TNF-α, and NF-kB expression induced by LPS were significantly decreased by cell incubation with spiny burs and leaves extracts. Taken together, the obtained results are promising and represent an important step to encourage recycling and valorization of chestnut byproducts, usually considered "waste".
RESUMEN
Neurodegenerative disease is an umbrella term for different conditions which primarily affect the neurons in the human brain. In the last century, significant research has been focused on mechanisms and risk factors relevant to the multifaceted etiopathogenesis of neurodegenerative diseases. Currently, neurodegenerative diseases are incurable, and the treatments available only control the symptoms or delay the progression of the disease. This review is aimed at characterizing the complex network of molecular mechanisms underpinning acute and chronic neurodegeneration, focusing on the disturbance in redox homeostasis, as a common mechanism behind five pivotal risk factors: aging, oxidative stress, inflammation, glycation, and vascular injury. Considering the complex multifactorial nature of neurodegenerative diseases, a preventive strategy able to simultaneously target multiple risk factors and disease mechanisms at an early stage is most likely to be effective to slow/halt the progression of neurodegenerative diseases.
Asunto(s)
Enfermedades Neurodegenerativas/terapia , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Humanos , Persona de Mediana Edad , Oxidación-Reducción , Factores de Riesgo , Adulto JovenRESUMEN
Sweet cherries (Prunus avium L.) are highly appreciated fruits for their taste, color, nutritional value, and beneficial health effects. In this work, seven new cultivars of sweet cherry were investigated for their main quality traits and nutraceutical value. The phytochemical profile of three classes of phenolic compounds and the antioxidant activity of the new cultivars were investigated through high-performance liquid chromatography with diode array detection (HPLC-DAD) and spectrophotometric assays, respectively, and compared with those of commonly commercialized cultivars. Cyanidine-3-O-rutinoside was the main anthocyanin in all genotypes, and its levels in some new cultivars were about three-fold higher than in commercial ones. The ORAC-assayed antioxidant capacity was positively correlated with the total anthocyanin index. The nutraceutical value of the new cultivars was investigated in terms of antioxidant/neuroprotective capacity in neuron-like SH-SY5Y cells. Results demonstrated that the new cultivars were more effective in counteracting oxidative stress and were also able to upregulate brain-derived neurotrophic factor (BDNF), a pro-survival neurotrophin, suggesting their potential pleiotropic role in counteracting neurodegenerations.