Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
JCI Insight ; 9(13)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38973610

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a slowly progressing disease with limited sensitive biomarkers that support clinical research. We analyzed plasma and serum samples from patients with SBMA and matched healthy controls in multiple cohorts, identifying 40 highly reproducible SBMA-associated proteins out of nearly 3,000 measured. These proteins were robustly enriched in gene sets of skeletal muscle expression and processes related to mitochondria and calcium signaling. Many proteins outperformed currently used clinical laboratory tests (e.g., creatine kinase [CK]) in distinguishing patients from controls and in their correlations with clinical and functional traits in patients. Two of the 40 proteins, Ectodysplasin A2 receptor (EDA2R) and Repulsive guidance molecule A (RGMA), were found to be associated with decreased survival and body weight in a mouse model of SBMA. In summary, we identified what we believe to be a robust and novel set of fluid protein biomarkers in SBMA that are linked with relevant disease features in patients and in a mouse model of disease. Changes in these SBMA-associated proteins could be used as an early predictor of treatment effects in clinical trials.


Asunto(s)
Biomarcadores , Humanos , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Ratones , Masculino , Femenino , Persona de Mediana Edad , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismo , Adulto , Estudios de Casos y Controles , Anciano , Proteínas Ligadas a GPI/sangre , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo
2.
Ann N Y Acad Sci ; 1536(1): 82-91, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38771698

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease. The immunosuppressive functions of regulatory T lymphocytes (Tregs) are impaired in ALS, and correlate to disease progression. The phase 2a IMODALS trial reported an increase in Treg number in ALS patients following the administration of low-dose (ld) interleukin-2 (IL-2). We propose a pharmacometabolomics approach to decipher metabolic modifications occurring in patients treated with ld-IL-2 and its relationship with Treg response. Blood metabolomic profiles were determined on days D1, D64, and D85 from patients receiving 2 MIU of IL-2 (n = 12) and patients receiving a placebo (n = 12). We discriminated the three time points for the treatment group (average error rate of 42%). Among the important metabolites, kynurenine increased between D1 and D64, followed by a reduction at D85. The percentage increase of Treg number from D1 to D64, as predicted by the metabolome at D1, was highly correlated with the observed value. This study provided a proof of concept for metabolic characterization of the effect of ld-IL-2 in ALS. These data could present advances toward a personalized medicine approach and present pharmacometabolomics as a key tool to complement genomic and transcriptional data for drug characterization, leading to systems pharmacology.


Asunto(s)
Esclerosis Amiotrófica Lateral , Interleucina-2 , Metabolómica , Linfocitos T Reguladores , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Humanos , Interleucina-2/administración & dosificación , Interleucina-2/metabolismo , Metabolómica/métodos , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Masculino , Persona de Mediana Edad , Femenino , Quinurenina/metabolismo , Anciano , Metaboloma/efectos de los fármacos
3.
Int Rev Neurobiol ; 176: 171-207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38802175

RESUMEN

Engineering new solutions for therapeutic benefit in Amyotrophic Lateral Sclerosis (ALS) has proved a difficult task to accomplish. This is largely the reflection of complexities at multiple levels, that require solutions to improve cost-effectiveness and outcomes. The main obstacle related to the condition's clinical heterogeneity, chiefly the broad difference in survival observed among ALS patients, imposes large populations studies and long follow-up to evaluate any efficacy. The emerging solution is composite clinical and biological parameters enabling prognostic stratification into homogeneous phenotypes for more affordable studies. From a therapeutic development perspective, the choice of a medicinal product requires the availability of treatment-specific biomarkers of target engagement to identify off-target effects based on the compound's putative modality of action. More importantly, there are no established biomarkers of treatment response that can complement clinical outcome measures and support futility and end of treatment analyses of efficacy. Ultimately the onus rests on the development of biomarkers encompassing the unmet needs of clinical trial design, from inclusion to efficacy. These readouts of the pathological process may be used in combination with clinical and paraclinical outcome measured, significantly reducing the time and financial burden of clinical studies. Progress towards a biomarker-driven clinical trial design in ALS has been possible thanks to the accurate detection of neurofilaments and of other immunological mediators in biological fluids with the disease progression, a step change enabling the testing of novel therapeutic agents in a new clinical trial setting. However, further progress remains to be made to find treatment specific target engagement biomarkers along with readouts of treatment response that can be reliably applied to all emerging therapies and clinical studies. Here we will cover the basic notions of biomarker development in ALS clinical trials, the most crucial unanswered questions and the unmet needs in the ALS biomarkers space.


Asunto(s)
Esclerosis Amiotrófica Lateral , Biomarcadores , Ensayos Clínicos como Asunto , Humanos , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Ensayos Clínicos como Asunto/métodos
4.
Artículo en Inglés | MEDLINE | ID: mdl-38426231

RESUMEN

BACKGROUND: The Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) total score is a widely used measure of functional status in Amyotrophic Lateral Sclerosis/Motor Neuron Disease (ALS), but recent evidence has raised doubts about its validity. The objective was to examine the measurement properties of the ALSFRS-R, aiming to produce valid measurement from all 12 scale items. METHOD: Longitudinal ALSFRS-R data were collected between 2013-2020 from 1120 people with ALS recruited from 35 centers, together with other scales in the Trajectories of Outcomes in Neurological Conditions-ALS (TONiC-ALS) study. The ALSFRS-R was analyzed by confirmatory factor analysis (CFA), Rasch Analysis (RA) and Mokken scaling. RESULTS: No definite factor structure of the ALSFRS-R was confirmed by CFA. RA revealed the raw score total to be invalid even at the ordinal level because of multidimensionality; valid interval level subscale measures could be found for the Bulbar, Fine-Motor and Gross-Motor domains but the Respiratory domain was only valid at an ordinal level. All four domains resolved into a single valid, interval level measure by using a bifactor RA. The smallest detectable difference was 10.4% of the range of the interval scale. CONCLUSION: A total ALSFRS-R ordinal raw score can lead to inferential bias in clinical trial results due to its non-linear nature. On the interval level transformation, more than 5 points difference is required before a statistically significant detectable difference can be observed. Transformation to interval level data should be mandatory in clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Análisis Factorial , Progresión de la Enfermedad
5.
Sci Transl Med ; 16(734): eadg7162, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38277467

RESUMEN

Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD. Using coordinated transcriptomic and proteomic studies of TDP-43-depleted human iPSC-derived neurons, we identified 65 peptides that mapped to 12 cryptic exons. Cryptic exons identified in TDP-43-depleted human iPSC-derived neurons were predictive of cryptic exons expressed in postmortem brain tissue from patients with TDP-43 proteinopathy. These cryptic exons produced transcript variants that generated de novo proteins. We found that the inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Last, we showed that 18 de novo peptides across 13 genes were present in CSF samples from patients with ALS/FTD spectrum disorders. The demonstration of cryptic exon translation suggests new mechanisms for ALS/FTD pathophysiology downstream of TDP-43 dysfunction and may provide a potential strategy to assay TDP-43 function in patient CSF.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/genética , Péptidos , Proteómica
6.
Nat Rev Neurol ; 19(12): 754-768, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37949994

RESUMEN

Disease heterogeneity in amyotrophic lateral sclerosis poses a substantial challenge in drug development. Categorization based on clinical features alone can help us predict the disease course and survival, but quantitative measures are also needed that can enhance the sensitivity of the clinical categorization. In this Review, we describe the emerging landscape of diagnostic, categorical and pharmacodynamic biomarkers in amyotrophic lateral sclerosis and their place in the rapidly evolving landscape of new therapeutics. Fluid-based markers from cerebrospinal fluid, blood and urine are emerging as useful diagnostic, pharmacodynamic and predictive biomarkers. Combinations of imaging measures have the potential to provide important diagnostic and prognostic information, and neurophysiological methods, including various electromyography-based measures and quantitative EEG-magnetoencephalography-evoked responses and corticomuscular coherence, are generating useful diagnostic, categorical and prognostic markers. Although none of these biomarker technologies has been fully incorporated into clinical practice or clinical trials as a primary outcome measure, strong evidence is accumulating to support their clinical utility.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Biomarcadores , Pronóstico , Progresión de la Enfermedad , Desarrollo de Medicamentos
7.
Neuropathol Appl Neurobiol ; 49(4): e12916, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37317649

RESUMEN

AIMS: This study aimed to explore the non-linear relationships between cell-free microRNAs (miRNAs) and their contribution to prediction of Frontotemporal dementia (FTD), an early onset dementia that is clinically heterogeneous, and too often suffers from delayed diagnosis. METHODS: We initially studied a training cohort of 219 subjects (135 FTD and 84 non-neurodegenerative controls) and then validated the results in a cohort of 74 subjects (33 FTD and 41 controls). RESULTS: On the basis of cell-free plasma miRNA profiling by next generation sequencing and machine learning approaches, we develop a non-linear prediction model that accurately distinguishes FTD from non-neurodegenerative controls in ~90% of cases. CONCLUSIONS: The fascinating potential of diagnostic miRNA biomarkers might enable early-stage detection and a cost-effective screening approach for clinical trials that can facilitate drug development.


Asunto(s)
Demencia Frontotemporal , MicroARNs , Humanos , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/genética , Aprendizaje Automático , Biomarcadores
8.
Mol Neurodegener ; 18(1): 30, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143081

RESUMEN

Amyotrophic lateral sclerosis is a complex disorder most of which is 'sporadic' of unknown origin but approximately 10% is familial, arising from single mutations in any of more than 30 genes. Thus, there are more than 30 familial ALS subtypes, with different, often unknown, molecular pathologies leading to a complex constellation of clinical phenotypes. We have mouse models for many genetic forms of the disorder, but these do not, on their own, necessarily show us the key pathological pathways at work in human patients. To date, we have no models for the 90% of ALS that is 'sporadic'. Potential therapies have been developed mainly using a limited set of mouse models, and through lack of alternatives, in the past these have been tested on patients regardless of aetiology. Cancer researchers have undertaken therapy development with similar challenges; they have responded by producing complex mouse models that have transformed understanding of pathological processes, and they have implemented patient stratification in multi-centre trials, leading to the effective translation of basic research findings to the clinic. ALS researchers have successfully adopted this combined approach, and now to increase our understanding of key disease pathologies, and our rate of progress for moving from mouse models to mechanism to ALS therapies we need more, innovative, complex mouse models to address specific questions.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ratones , Animales , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Modelos Animales de Enfermedad , Mutación , Fenotipo
9.
bioRxiv ; 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36747793

RESUMEN

Functional loss of TDP-43, an RNA-binding protein genetically and pathologically linked to ALS and FTD, leads to inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. However, the possibility of de novo protein synthesis from cryptic exon transcripts has not been explored. Here, we show that mRNA transcripts harboring cryptic exons generate de novo proteins both in TDP-43 deficient cellular models and in disease. Using coordinated transcriptomic and proteomic studies of TDP-43 depleted iPSC-derived neurons, we identified numerous peptides that mapped to cryptic exons. Cryptic exons identified in iPSC models were highly predictive of cryptic exons expressed in brains of patients with TDP-43 proteinopathy, including cryptic transcripts that generated de novo proteins. We discovered that inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Finally, we showed that these de novo peptides were present in CSF from patients with ALS. The demonstration of cryptic exon translation suggests new mechanisms for ALS pathophysiology downstream of TDP-43 dysfunction and may provide a strategy for novel biomarker development.

10.
Artículo en Inglés | MEDLINE | ID: mdl-35876069

RESUMEN

Aim: To investigate whether the World Health Organization Disability Assessment Schedule 2.0 (WHODAS) can provide interval level measurement of disability in Amyotrophic Lateral Sclerosis (ALS), allowing parametric analyses. Methods: Data on the WHODAS 12, 32, and 36-item versions, from 1120 patients studied at one or more time points, were fit to the Rasch model and comparisons made against ALSFRS-R, King's staging, and mortality. Trajectory modeling was undertaken for a newly diagnosed (≤6 months) cohort of 454 individuals. Results: Total scores for WHODAS 32 and 36-item versions can be converted to interval level measurement suitable for individual clinical use, and the 12-item WHODAS total for group use. The 36-item version is shown to be equivalent to the 32-item version. Expected correlations were seen with King's staging, ALSFRS-R, and EQ-5D-5L. Trajectory analysis of disability (WHODAS 2.0) showed three clearly demarcated groups with differences in King's staging, depressive symptomatology and mortality, but not age. Conclusions: The WHODAS 2.0 is a brief patient reported outcome measure which can be used to measure disability in ALS. Provided the patient answers all 36 (32 if not working) items, the conversion table produces an interval level estimate for parametric analyses. The different trajectories demonstrated from diagnosis support the concept of a prodromal period, and suggest the WHODAS 2.0 could be used for surveillance of at risk populations, such as those with genetic predisposition.


Asunto(s)
Esclerosis Amiotrófica Lateral , Personas con Discapacidad , Humanos , Evaluación de la Discapacidad , Reproducibilidad de los Resultados , Encuestas y Cuestionarios , Psicometría
11.
Artículo en Inglés | MEDLINE | ID: mdl-36323511

RESUMEN

BACKGROUND AND OBJECTIVES: Aging is known to exacerbate neuroinflammation, and in the neurodegenerative disorder amyotrophic lateral sclerosis (ALS), an older age is associated with a worse prognosis. We have previously shown the activation of cell senescence pathways in the proteome of peripheral blood mononuclear cells and the increase of proinflammatory cytokines in blood from individuals living with ALS. In this single-center, retrospective study, we investigated the expression of senescent-like blood mononuclear cells in ALS. METHODS: We first applied multidimensional cytometry by time-of-flight (CyTOF) to study the senescent immunophenotype of blood mononuclear cells from 21 patients with ALS and 10 healthy controls (HCs). We then used targeted flow cytometry (FC) to investigate frequencies of senescent blood lymphocytes in 40 patients with ALS and 20 HCs. Longitudinal analysis included 2 additional time points in 17 patients with ALS. Frequencies of senescent-like lymphocytes were analyzed in relation to survival. RESULTS: Unsupervised clustering of CyTOF data showed higher frequencies of senescent CD4+CD27-CD57+ T cells in patients with ALS compared with those in HCs (p = 0.0017, false discovery (FDR)-adjusted p = 0.029). Moderate to strong negative correlations were identified between CD4 T central memory-cell frequencies and survival (R = -061, p = 0.01; FDR-adjusted p < 0.1) and between CD95 CD8 cells and ALS functional rating scale revised at baseline (R = -0.72, p = 0.001; FDR-adjusted p < 0.1).Targeted FC analysis showed higher memory T regulatory cells (p = 0.0052) and memory CD8+ T cell (M-Tc; p = 0.0006) in bulbar ALS (A-B) compared with those in limb ALS (A-L), while late memory B cells (LM-B) were also elevated in A-B and fast-progressing ALS (p = 0.0059). Higher M-Tc levels separated A-B from A-L (AUC: 0.887; p < 0.0001). A linear regression model with prespecified clinical independent variables and neurofilament light chain plasma concentration showed that higher frequencies of LM-B predicted a shorter survival (hazard ratio: 1.094, CI: 1.026-1.167; p = 0.006). DISCUSSION: Our data suggest that a systemic elevation of senescent and late memory T and B lymphocytes is a feature of faster progressing ALS and of ALS individuals with bulbar involvement. Lymphocyte senescence and their memory state may be central to the immune dysregulation known to drive disease progression in ALS and a target for biomarkers and therapeutics discovery.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/genética , Leucocitos Mononucleares , Estudios Retrospectivos , Progresión de la Enfermedad , Linfocitos T CD4-Positivos
12.
Analyst ; 147(22): 5113-5120, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36222101

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease in urgent need of disease biomarkers for the assessment of promising therapeutic candidates in clinical trials. Raman spectroscopy is an attractive technique for identifying disease related molecular changes due to its simplicity. Here, we describe a fibre optic fluid cell for undertaking spontaneous Raman spectroscopy studies of human biofluids that is suitable for use away from a standard laboratory setting. Using this system, we examined serum obtained from patients with ALS at their first presentation to our centre (n = 66) and 4 months later (n = 27). We analysed Raman spectra using bounded simplex-structured matrix factorization (BSSMF), a generalisation of non-negative matrix factorisation which uses the distribution of the original data to limit the factorisation modes (spectral patterns). Biomarkers associated with ALS disease such as measures of symptom severity, respiratory function and inflammatory/immune pathways (C3/C-reactive protein) correlated with baseline Raman modes. Between visit spectral changes were highly significant (p = 0.0002) and were related to protein structure. Comparison of Raman data with established ALS biomarkers as a trial outcome measure demonstrated a reduction in required sample size with BSSMF Raman. Our portable, simple to use fibre optic system allied to BSSMF shows promise in the quantification of disease-related changes in ALS over short timescales.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/metabolismo , Espectrometría Raman , Biomarcadores , Proteína C-Reactiva
13.
Antioxidants (Basel) ; 11(10)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36290620

RESUMEN

The hexanucleotide expansion of the C9orf72 gene is found in 40% of familial amyotrophic lateral sclerosis (ALS) patients. This genetic alteration has been connected with impaired management of reactive oxygen species. In this study, we conducted targeted transcriptional profiling in leukocytes from C9orf72 patients and control subjects by examining the mRNA levels of 84 redox-related genes. The expression of ten redox genes was altered in samples from C9orf72 ALS patients compared to healthy controls. Considering that Nuclear factor erythroid 2-Related Factor 2 (NRF2) modulates the expression of a wide range of redox genes, we further investigated its status on an in vitro model of dipeptide repeat (DPR) toxicity. This model mimics the gain of function, toxic mechanisms attributed to C9orf72 pathology. We found that exposure to DPRs increased superoxide levels and reduced mitochondrial potential as well as cell survival. Importantly, cells overexpressing DPRs exhibited reduced protein levels of NRF2 and its target genes upon inhibition of the proteasome or its canonical repressor, the E3 ligase adapter KEAP1. However, NRF2 activation was sufficient to recover cell viability and redox homeostasis. This study identifies NRF2 as a putative target in precision medicine for the therapy of ALS patients harboring C9orf72 expansion repeats.

14.
Acta Neurol Scand ; 146(4): 375-388, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36156207

RESUMEN

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease among adults. With diagnosis reached relatively late into the disease process, extensive motor cell loss narrows the window for therapeutic opportunities. Clinical heterogeneity in ALS and the lack of disease-specific biomarkers have so far led to large-sized clinical trials with long follow-up needed to define clinical outcomes. In advanced ALS patients, there is presently limited scope to use imaging or invasive cerebrospinal fluid (CSF) collection as a source of disease biomarkers. The development of more patient-friendly and accessible blood biomarker assays is hampered by analytical hurdles like the matrix effect of blood components. However, blood also provides the opportunity to identify disease-specific adaptive changes of the stoichiometry and conformation of target proteins and the endogenous immunological response to low-abundance brain peptides, such as neurofilaments (Nf). Among those biomarkers under investigation in ALS, the change in concentration before or after diagnosis of Nf has been shown to aid prognostication and to allow the a priori stratification of ALS patients into smaller sized and clinically more homogeneous cohorts, supporting more affordable clinical trials. Here, we discuss the technical hurdles affecting reproducible and sensitive biomarker measurement in blood. We also summarize the state of the art of non-CSF biomarkers in the study of prognosis, disease progression, and treatment response. We will then address the potential as disease-specific biomarkers of the newly discovered cryptic peptides which are formed down-stream of TDP-43 loss of function, the hallmark of ALS pathobiology.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedad de la Neurona Motora , Adulto , Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Biomarcadores , Proteínas de Unión al ADN , Humanos , Pronóstico
15.
Eur J Neurol ; 29(11): 3347-3357, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35837802

RESUMEN

BACKGROUND AND PURPOSE: This study was undertaken to explore associations between plasma neurofilament light chain (pNfL) concentration (pg/ml) and disease activity in patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and examine the usefulness of pNfL concentrations in determining disease remission. METHODS: We examined pNfL concentrations in treatment-naïve CIDP patients (n = 10) before and after intravenous immunoglobulin (IVIg) induction treatment, in pNfL concentrations in patients on maintenance IVIg treatment who had stable (n = 15) versus unstable disease (n = 9), and in clinically stable IVIg-treated patients (n = 10) in whom we suspended IVIg to determine disease activity and ongoing need for maintenance IVIg. pNfL concentrations in an age-matched healthy control group were measured for comparison. RESULTS: Among treatment-naïve patients, pNfL concentration was higher in patients before IVIg treatment than healthy controls and subsequently reduced to be comparable to control group values after IVIg induction. Among CIDP patients on IVIg treatment, pNfL concentration was significantly higher in unstable patients than stable patients. A pNFL concentration > 16.6 pg/ml distinguished unstable treated CIDP from stable treated CIDP (sensitivity = 86.7%, specificity = 66.7%, area under receiver operating characteristic curve = 0.73). Among the treatment withdrawal group, there was a statistically significant correlation between pNfL concentration at time of IVIg withdrawal and the likelihood of relapse (r = 0.72, p < 0.05), suggesting an association of higher pNfL concentration with active disease. CONCLUSIONS: pNfL concentrations may be a sensitive, clinically useful biomarker in assessing subclinical disease activity.


Asunto(s)
Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante , Biomarcadores , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Infusiones Intravenosas , Filamentos Intermedios , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/tratamiento farmacológico
16.
J Neurol ; 269(10): 5395-5404, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35614165

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a prognostically heterogeneous neurodegenerative disease. Blood creatine kinase (CK) level has been inconsistently reported as a prognostic biomarker and raised levels in some ALS patients have been presumed to reflect muscle wasting, which is also variable. METHODS: MEDLINE was systematically searched for papers related to CK in ALS and the relevant studies were reviewed. Using data from 222 ALS patients in a multi-centre, prospective, longitudinal cohort, survival analyses using Kaplan-Meier and Cox proportional hazards models were undertaken in relation to CK and other prognostic factors. RESULTS: Twenty-five studies investigating CK in ALS were identified, of which 10 specifically studied the link between CK and survival. Five studies observed no association, four found that higher CK levels were associated with longer survival and one, the opposite. In our cohort (n = 222), 39% of patients had a CK level above the laboratory reference range. Levels were higher in males compared to females (p < 0.001), in patients with limb versus bulbar onset of symptoms (p < 0.001) and in patients with higher lower motor neuron burden (p < 0.001). There was no significant trend in longitudinal CK values. Although a higher standardised log (CK) at first visit was associated with longer survival in univariate analysis (hazard ratio 0.75, p = 0.003), there was no significant association after adjusting for other prognostic covariates. CONCLUSION: While raised CK levels in ALS do reflect lower motor neuron denervation to a large extent, they are not independently associated with survival when measured in the symptomatic phase of the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/complicaciones , Estudios de Cohortes , Creatina Quinasa , Femenino , Humanos , Masculino , Enfermedades Neurodegenerativas/complicaciones , Pronóstico , Estudios Prospectivos
17.
Brain ; 145(10): 3500-3508, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-35594156

RESUMEN

Amyotrophic lateral sclerosis, when viewed as a biological entity rather than a clinical syndrome, probably evolves along a continuum, with the initial clinically silent phase eventually evolving into clinically manifest amyotrophic lateral sclerosis. Since motor neuron degeneration is incremental and cumulative over time, it stands to reason that the clinical syndrome of amyotrophic lateral sclerosis is probably preceded by a prodromal state characterized by minor motor abnormalities that are initially insufficient to permit a diagnosis of amyotrophic lateral sclerosis. This prodromal period, however, is usually missed, given the invariably long delays between symptom onset and diagnostic evaluation. The Pre-Symptomatic Familial ALS Study, a cohort study of pre-symptomatic gene mutation carriers, offers a unique opportunity to observe what is typically unseen. Here we describe the clinical characterization of 20 pre-symptomatic mutation carriers (in SOD1, FUS and C9orf72) whose phenoconversion to clinically manifest disease has been prospectively studied. In so doing, we observed a prodromal phase of mild motor impairment in 11 of 20 phenoconverters. Among the n = 12 SOD1 A4V mutation carriers, phenoconversion was characterized by abrupt onset of weakness, with a short (1-3.5 months) prodromal period observable in a small minority (n = 3); the observable prodrome invariably involved the lower motor neuron axis. By contrast, in all n = 3 SOD1 I113T mutation carriers, diffuse lower motor neuron and upper motor neuron signs evolved insidiously during a prodromal period that extended over a period of many years; prodromal manifestations eventually coalesced into a clinical syndrome that is recognizable as amyotrophic lateral sclerosis. Similarly, in all n = 3 C9orf72 hexanucleotide repeat expansion mutation carriers, focal or multifocal manifestations of disease evolved gradually over a prodromal period of 1-2 years. Clinically manifest ALS also emerged following a prodromal period of mild motor impairment, lasting >4 years and ∼9 months, respectively, in n = 2 with other gene mutations (SOD1 L106V and FUS c.521del6). On the basis of this empirical evidence, we conclude that mild motor impairment is an observable state that precedes clinically manifest disease in three of the most common genetic forms of amyotrophic lateral sclerosis (SOD1, FUS, C9orf72), and perhaps in all genetic amyotrophic lateral sclerosis; we also propose that this might be true of non-genetic amyotrophic lateral sclerosis. As a diagnostic label, mild motor impairment provides the language to describe the indeterminate (and sometimes intermediate) transition between the unaffected state and clinically manifest amyotrophic lateral sclerosis. Recognizing mild motor impairment as a distinct clinical entity should generate fresh urgency for developing biomarkers reflecting the earliest events in the degenerative cascade, with potential to reduce the diagnostic delay and to permit earlier therapeutic intervention.


Asunto(s)
Esclerosis Amiotrófica Lateral , Trastornos Motores , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Síntomas Prodrómicos , Superóxido Dismutasa-1/genética , Estudios de Cohortes , Diagnóstico Tardío , Trastornos Motores/genética , Mutación/genética , Biomarcadores
18.
J Neurol Neurosurg Psychiatry ; 93(7): 761-771, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35379698

RESUMEN

OBJECTIVE: A GGGGCC repeat expansion in the C9orf72 gene is the most common cause of genetic frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). As potential therapies targeting the repeat expansion are now entering clinical trials, sensitive biomarker assays of target engagement are urgently required. Our objective was to develop such an assay. METHODS: We used the single molecule array (Simoa) platform to develop an immunoassay for measuring poly(GP) dipeptide repeat proteins (DPRs) generated by the C9orf72 repeat expansion in cerebrospinal fluid (CSF) of people with C9orf72-associated FTD/ALS. RESULTS AND CONCLUSIONS: We show the assay to be highly sensitive and robust, passing extensive qualification criteria including low intraplate and interplate variability, a high precision and accuracy in measuring both calibrators and samples, dilutional parallelism, tolerance to sample and standard freeze-thaw and no haemoglobin interference. We used this assay to measure poly(GP) in CSF samples collected through the Genetic FTD Initiative (N=40 C9orf72 and 15 controls). We found it had 100% specificity and 100% sensitivity and a large window for detecting target engagement, as the C9orf72 CSF sample with the lowest poly(GP) signal had eightfold higher signal than controls and on average values from C9orf72 samples were 38-fold higher than controls, which all fell below the lower limit of quantification of the assay. These data indicate that a Simoa-based poly(GP) DPR assay is suitable for use in clinical trials to determine target engagement of therapeutics aimed at reducing C9orf72 repeat-containing transcripts.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Biomarcadores/líquido cefalorraquídeo , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos
19.
Eur J Neurol ; 29(7): 1930-1939, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35263489

RESUMEN

BACKGROUND AND PURPOSE: This study was undertaken to determine the diagnostic and prognostic value of a panel of serum biomarkers and to correlate their concentrations with several clinical parameters in a large cohort of patients with amyotrophic lateral sclerosis (ALS). METHODS: One hundred forty-three consecutive patients with ALS and a control cohort consisting of 70 patients with other neurodegenerative disorders (DEG), 70 patients with ALS mimic disorders (ALSmd), and 45 healthy controls (HC) were included. Serum neurofilament light chain (NfL), ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), glial fibrillary acidic protein (GFAP), and total tau protein levels were measured using ultrasensitive single molecule array. RESULTS: NfL correlated with disease progression rate (p < 0.001) and with the measures of upper motor neuron burden (p < 0.001). NfL was higher in the ALS patients with classic and pyramidal phenotype. GFAP was raised in ALS with cognitive-behavioral impairment compared with ALS with normal cognition. NfL displayed the best diagnostic performance in discriminating ALS from HC (area under the curve [AUC] = 0.990), DEG (AUC = 0.946), and ALSmd (AUC = 0.850). UCHL1 performed well in distinguishing ALS from HC (AUC = 0.761), whereas it was not helpful in differentiating ALS from DEG and ALSmd. In multivariate analysis, NfL (p < 0.001) and UCHL1 (p = 0.038) were independent prognostic factors. Survival analysis combining NfL and UCHL1 effectively stratified patients with lower NfL levels (p < 0.001). CONCLUSIONS: NfL is a useful biomarker for the diagnosis of ALS and the strongest predictor of survival. UCHL1 is an independent prognostic factor helpful in stratifying survival in patients with low NfL levels, likely to have slowly progressive disease. GFAP reflects extramotor involvement, namely cognitive impairment or frontotemporal dementia.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/diagnóstico , Biomarcadores , Estudios de Cohortes , Humanos , Proteínas de Neurofilamentos , Pronóstico
20.
Int J Mol Sci ; 23(6)2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35328793

RESUMEN

Monocytes expressing the inflammation suppressing active CD11b, a beta2 integrin, may regulate neuroinflammation and modify clinical outcomes in amyotrophic lateral sclerosis (ALS). In this single site, retrospective study, peripheral blood mononuclear cells from 38 individuals living with ALS and 20 non-neurological controls (NNC) were investigated using flow cytometry to study active CD11b integrin classical (CM), intermediate (IM) and non-classical (NCM) monocytes during ALS progression. Seventeen ALS participants were sampled at the baseline (V1) and at two additional time points (V2 and V3) for longitudinal analysis. Active CD11b+ CM frequencies increased steeply between the baseline and V3 (ANOVA repeated measurement, p < 0.001), and the V2/V1 ratio negatively correlated with the disease progression rate, similar to higher frequencies of active CD11b+ NCM at the baseline (R = −0.6567; p = 0.0031 and R = 0.3862; p = 0.0168, respectively). CD11b NCM, clinical covariates and neurofilament light-chain plasma concentration at the baseline predicted shorter survival in a multivariable and univariate analysis (CD11b NCM­HR: 1.05, CI: 1.01−1.11, p = 0.013. Log rank: above median: 43 months and below median: 21.22 months; p = 0.0022). Blood samples with the highest frequencies of active CD11b+ IM and NCM contained the lowest concentrations of soluble CD11b. Our preliminary data suggest that the levels of active CD11b+ monocytes and NCM in the blood predict different clinical outcomes in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Biomarcadores , Progresión de la Enfermedad , Humanos , Leucocitos Mononucleares , Monocitos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA