Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Acta Radiol ; 59(1): 105-113, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28376634

RESUMEN

Background The diagnostic accuracy of diffusion-weighted imaging (DWI) to detect prostate cancer is well-established. DWI provides visual as well as quantitative means of detecting tumor, the apparent diffusion coefficient (ADC). Recently higher b-values have been used to improve DWI's diagnostic performance. Purpose To determine the diagnostic performance of high b-value DWI at detecting prostate cancer and whether quantifying ADC improves accuracy. Material and Methods A comprehensive literature search of published and unpublished databases was performed. Eligible studies had histopathologically proven prostate cancer, DWI sequences using b-values ≥ 1000 s/mm2, less than ten patients, and data for creating a 2 × 2 table. Study quality was assessed with QUADAS-2 (Quality Assessment of diagnostic Accuracy Studies). Sensitivity and specificity were calculated and tests for statistical heterogeneity and threshold effect performed. Results were plotted on a summary receiver operating characteristic curve (sROC) and the area under the curve (AUC) determined the diagnostic performance of high b-value DWI. Results Ten studies met eligibility criteria with 13 subsets of data available for analysis, including 522 patients. Pooled sensitivity and specificity were 0.59 (95% confidence interval [CI], 0.57-0.61) and 0.92 (95% CI, 0.91-0.92), respectively, and the sROC AUC was 0.92. Subgroup analysis showed a statistically significant ( P = 0.03) improvement in accuracy when using tumor visual assessment rather than ADC. Conclusion High b-value DWI gives good diagnostic performance for prostate cancer detection and visual assessment of tumor diffusion is significantly more accurate than ROI measurements of ADC.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Humanos , Masculino , Próstata/diagnóstico por imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
2.
Semin Musculoskelet Radiol ; 19(4): 328-34, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26583361

RESUMEN

Artifact from metallic orthopedic prosthesis is caused by inhomogeneity in the B0 magnetic field, particularly in the frequency encoding direction. This results in signal voids, signal pileup, and geometric distortion. Advances in reducing this artifact allow us to assess the complications of joint replacement and improve imaging of nearby tissues such as within the pelvis. Selection of titanium implants and lower field strength MR units provide optimal conditions for artifact reduction. Conventional sequences can be optimized by using inversion recovery sequences, large matrices, high receiver bandwidths, and thin slices. Optimizing these parameters comes with a penalty in terms of signal-to-noise ratio or increased acquisition times. Successful artifact reduction depends on the strength of the frequency encoding gradients. Newer dedicated artifact reduction sequences include view-angle-tilting and a selection of multispectral techniques including multiacquisition variable-resonance image combination (MAVRIC) and slice encoding for metal artifact correction (SEMAC). Many of these are being used in combination. The multispectral sequences acquire three-dimensional data at very narrow frequencies and use of phase encoding for spatial localization. Planar images can then be reconstructed with very little susceptibility artifact.


Asunto(s)
Artefactos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Prótesis Articulares , Imagen por Resonancia Magnética/métodos , Humanos , Metales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA