Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(31): 37741-37747, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37490851

RESUMEN

Organic solar cells (OSCs) have emerged as a promising technology for renewable energy generation, and researchers are constantly exploring ways to improve their efficiency. For prediction of photovoltaic properties in OSCs, many machine learning models have been used in the past. All the models are used with fixed molecular descriptors and molecular fingerprints as input for power conversion efficiency (PCE) prediction. Recently, the graph neural network (GNN), which can model graph structures of the molecule, has received increasing attention as a method that could potentially overcome the limitations of fixed descriptors by learning the task-specific representations using graph convolutions. In this study, we have used the directed message passing neural network (D-MPNN), an emerging type of GNN for predicting PCE of organic solar cells, and the results are compared for the same train and test set with fixed descriptors and fingerprints. The excellent performance demonstrated by the D-MPNN model in this investigation highlights its potential for predicting PCE, surpassing the limitations of conventional fixed descriptors.

2.
ACS Appl Mater Interfaces ; 14(49): 54895-54906, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36459438

RESUMEN

The structural flexibility of organic semiconductors offers vast a search space, and many potential candidates (donor and acceptor) for organic solar cells (OSCs) are yet to be discovered. Machine learning is extensively used for material discovery but performs poorly on extrapolation tasks with small training data sets. Active learning techniques can guide experimentalists to extrapolate and find the most promising D:A combination in a significantly small number of experiments. This study uses an active learning technique with a predictive random forest model to iteratively find the most optimal D:A combinations in the search space using various acquisition functions. Active learning results with five different acquisition functions (MM, MEI, MLI, MU, and UCB) are compared. Results reveal that acquisition functions that combine exploitation and exploration (MEI, MLI, and UCB) perform far better than purely exploiting (MM) and purely exploring (MU) acquisition functions. Interestingly, the proposed model can overcome the bottleneck of extrapolating small training data sets and find most promising D:A combinations in relatively fewer experiments.

3.
ACS Appl Mater Interfaces ; 12(37): 41869-41876, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32799443

RESUMEN

In recent years, tremendous growth has been seen for solution-processed bulk heterojunction solar cells (BHJSCs) using fullerene-free molecular acceptors. Herein, we report the synthesis, characterization of a coumarin-based organic semiconducting molecule C1, and its use in BHJSCs as an electron donor. The compound exhibited an absorption band at 472 nm in chloroform solution with an optical energy gap of 2.33 eV. The HOMO/LUMO energy levels of C1 were found to be ideal for use in BHJSCs. Using PC71BM and a fullerene-free acceptor IT-4F, the device generated power conversion efficiencies (PCEs) of 6.17 and 8.31%, respectively. The success of the device based on a fullerene-free acceptor is a result of complementary absorption and well-matched energy levels, resulting in an improved photocurrent and photovoltage in the device. Moreover, ternary solar cells fabricated by employing C1 (20 wt%) as a secondary donor, i.e., an active layer of C1:PM6:IT-4F (0.2:0.8:1.5), generated an enhanced PCE of 11.56% with a high short-circuit current density (JSC) of 16.42 mA cm-2, an open-circuit voltage (VOC) of 1.02 V, and a fill factor of 0.69 under 1 sun spectral illumination, which is ∼8% higher than that for the PM6:IT-4F-based binary device (PCE = 10.70%). The increased PCE for the ternary organic solar cell may be related to the efficient exciton generation and its dissociation via Forster resonance energy transfer, which guarantees enough time for an exciton to diffuse toward the D/A interfaces.

4.
ACS Appl Mater Interfaces ; 11(31): 28078-28087, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31294545

RESUMEN

A new low-molecular-weight porphyrin-based polymer, PPPyDPP, with pyridine-capped diketopyrrolopyrrole (DPP) has been synthesized, and its optical and electrochemical properties were investigated. The polymer is prepared with a low content of homocoupling units and gives a widely spread absorption from 400 to 900 nm with a narrow optical band gap of 1.46 eV. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels are respectively located at -5.27 and -3.78 eV, respectively. PPPyDPP was used as the electron donor, whereas [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) and bis(rhodanine)indolo-[3,2-b]-carbazole (ICzRd2), a nonfullerene small molecule, were used as acceptors for the fabrication of solution-processed bulk heterojunction polymer solar cells. Overall power conversion efficiencies (PCEs) of 7.31 and 9.16% (record high for porphyrin-containing polymers) were obtained for PC71BM and ICzRd2, respectively. A high Voc of 1.01 V and a low Eloss of 0.45 eV may explain this new record.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA