Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Bioengineering (Basel) ; 10(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38135945

RESUMEN

This perspective is an overview of the recent advances in teeth microcrack (MC) research, where there is a clear tendency towards a shift from two-dimensional (2D) to three-dimensional (3D) examination techniques, enhanced with artificial intelligence models for data processing and image acquisition. X-ray micro-computed tomography combined with machine learning allows 3D characterization of all spatially resolved cracks, despite the locations within the tooth in which they begin and extend, and the arrangement of MCs and their structural properties. With photoluminescence and micro-/nano-Raman spectroscopy, optical properties and chemical and elemental composition of the material can be evaluated, thus helping to assess the structural integrity of the tooth at the MC site. Approaching tooth samples having cracks from different perspectives and using complementary laboratory techniques, there is a natural progression from 3D to multi-modal imaging, where the volumetric (passive: dimensions) information of the tooth sample can be supplemented by dynamic (active: composition, interaction) image data. Revelation of tooth cracks clearly shows the need to re-assess the role of these MCs and their effect on the structural integrity and longevity of the tooth. This provides insight into the nature of cracks in natural hard materials and contributes to a better understanding of how bio-inspired structures could be designed to foresee crack propagation in biosolids.

2.
Nanomaterials (Basel) ; 13(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37630866

RESUMEN

The increasing demand for optics quality requires the lowest optical power loss, which can occur from unwanted reflections. Laser direct writing (LDW) allows for the fabrication of complex structures, which is particularly advantageous in micro-optic applications. This research demonstrates the possibility of forming an anti-reflective coating on hybrid polymer micro-lenses fabricated by employing LDW without changing their geometry. Such coating deposited via atomic layer deposition (ALD) decreased the reflection from 3.3% to 0.1% at a wavelength of 633 nm for one surface of hybrid organic-inorganic SZ2080™ material. This research validates the compatibility of ALD with LDW 3D multiphoton lithography synergistically, expanding its applications on optical grade sub-100 µm scale micro-optics.

3.
Micromachines (Basel) ; 14(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37421030

RESUMEN

Microlens arrays (MLAs) which are increasingly popular micro-optical elements in compact integrated optical systems were fabricated using a femtosecond direct laser write (fs-DLW) technique in the low-shrinkage SZ2080TM photoresist. High-fidelity definition of 3D surfaces on IR transparent CaF2 substrates allowed to achieve ∼50% transmittance in the chemical fingerprinting spectral region 2-5 µm wavelengths since MLAs were only ∼10 µm high corresponding to the numerical aperture of 0.3 (the lens height is comparable with the IR wavelength). To combine diffractive and refractive capabilities in miniaturised optical setup, a graphene oxide (GO) grating acting as a linear polariser was also fabricated by fs-DLW by ablation of a 1 µm-thick GO thin film. Such an ultra-thin GO polariser can be integrated with the fabricated MLA to add dispersion control at the focal plane. Pairs of MLAs and GO polarisers were characterised throughout the visible-IR spectral window and numerical modelling was used to simulate their performance. A good match between the experimental results of MLA focusing and simulations was achieved.

4.
Front Bioeng Biotechnol ; 11: 1167753, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122855

RESUMEN

Providing a 3D environment that mimics the native extracellular matrix is becoming increasingly important for various applications such as cell function studies, regenerative medicine, and drug discovery. Among the most critical parameters to consider are the scaffold's complicated micro-scale geometry and material properties. Therefore, stereolithography based on photopolymerization is an emerging technique because of its ability to selectively form volumetric structures from liquid resin through localized polymerization reactions. However, one of the most important parameters of the scaffold is biocompatibility, which depends not only on the material but also on the exposure conditions and post-processing, which is currently underestimated. To investigate this systematically, microporous scaffolds with pore sizes of 0.05 mm3 corresponding to a porosity of 16,4% were fabricated using the stereolithography printer Asiga PICO2 39 UV from the widely used resins FormLabs Clear and Flexible. The use of various polymers is usually limited for cells because, after wet chemical development, the non-negligible amount of remaining monomers intertwined in the photopolymerized structures is significantly toxic to cells. Therefore, the aim of this research was to find the best method to remove monomers from the 3D scaffold by additional UV exposure. For this purpose, a Soxhlet extractor was used for the first time, and the monomers were immersed in different alcohols. A Raman microspectroscopy was also used to investigate whether different post-processing methods affect DC (cross-linking) to find out if this specifically affects the biocompatibility of the scaffolds. Finally, mesenchymal stem cells from rat dental pulp were examined to confirm the increased biocompatibility of the scaffolds and their ability to support cell differentiation into bone tissue cells.

5.
Polymers (Basel) ; 14(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36559737

RESUMEN

A novel dual cure photopolymerizable system was developed by combining two plant-derived acrylic monomers, acrylated epoxidized soybean oil and vanillin dimethacrylate, as well as the thiol monomer pentaerythritol tetrakis (3-mercaptopropionate). Carefully selected resin composition allowed the researchers to overcome earlier stability/premature polymerization problems and to obtain stable (up to six months at 4 °C) and selectively-polymerizable resin. The resin demonstrated rapid photocuring without an induction period and reached a rigidity of 317.66 MPa, which was more than 20 times higher than that of the other vanillin-based polymers. Improved mechanical properties and thermal stability of the resulting cross-linked photopolymer were obtained compared to similar homo- and copolymers: Young's modulus reached 4753 MPa, the compression modulus reached 1634 MPa, and the temperature of 10% weight loss was 373 °C. The developed photocurable system was successfully applied in stereolithography and characterized with femtosecond pulsed two-beam initiation threshold measurement for the first time. The polymerization threshold of the investigated polymer was determined to be controlled by the sample temperature, making the footprint of the workstations cheaper, faster, and more reliable.

6.
Sci Rep ; 12(1): 22489, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577779

RESUMEN

Although teeth microcracks (MCs) have long been considered more of an aesthetic problem, their exact role in the structure of a tooth and impact on its functionality is still unknown. The aim of this study was to reveal the possibilities of an X-ray micro-computed tomography ([Formula: see text]CT) in combination with convolutional neural network (CNN) assisted voxel classification and volume segmentation for three-dimensional (3D) qualitative analysis of tooth microstructure and verify this approach with four extracted human premolars. Samples were scanned using a [Formula: see text]CT instrument (Xradia 520 Versa; ZEISS) and segmented with CNN to identify enamel, dentin, and cracks. A new CNN image segmentation model was trained based on "Multiclass semantic segmentation using DeepLabV3+" example and was implemented with "TensorFlow". The technique which was used allowed 3D characterization of all MCs of a tooth, regardless of the volume of the tooth in which they begin and extend, and the evaluation of the arrangement of cracks and their structural features. The proposed method revealed an intricate star-shaped network of MCs covering most of the inner tooth, and the main crack planes in all samples were arranged radially in two almost perpendicular directions, suggesting that the cracks could be considered as a planar structure.


Asunto(s)
Diente , Humanos , Microtomografía por Rayos X , Diente/diagnóstico por imagen , Aprendizaje Automático , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos
7.
Polymers (Basel) ; 14(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35746036

RESUMEN

Novel thermo-responsive shape-memory vanillin-based photopolymers have been developed for microtransfer molding. Different mixtures of vanillin dimethacrylate with tridecyl methacrylate and 1,3-benzenedithiol have been tested as photocurable resins. The combination of the different reaction mechanisms, thiol-acrylate photopolymerization, and acrylate homopolymerization, that were tuned by changing the ratio of monomers, resulted in a wide range of the thermal and mechanical properties of the photopolymers obtained. All polymers demonstrated great shape-memory properties and were able to return to their primary shape after the temperature programming and maintain their temporary shape. The selected compositions weretested by the microtransfer molding technique and showed promising results. The developed thermo-responsive shape-memory bio-based photopolymers have great potential for forming microtransfered structures and devices applicable on non-flat surfaces.

8.
Sci Rep ; 11(1): 14810, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285299

RESUMEN

Although the topic of tooth fractures has been extensively analyzed in the dental literature, there is still insufficient information about the potential effect of enamel microcracks (EMCs) on the underlying tooth structures. For a precise examination of the extent of the damage to the tooth structure in the area of EMCs, it is necessary to carry out their volumetric [(three-dimensional (3D)] evaluation. The aim of this study was to validate an X-ray micro-computed tomography ([Formula: see text]CT) as a technique suitable for 3D non-destructive visualization and qualitative analysis of teeth EMCs of different severity. Extracted human maxillary premolars were examined using a [Formula: see text]CT instrument ZEISS Xradia 520 Versa. In order to separate crack, dentin, and enamel volumes a Deep Learning (DL) algorithm, part of the Dragonfly's segmentation toolkit, was utilized. For segmentation needs we implemented Dragonfly's pre-built UNet neural network. The scanning technique which was used made it possible to recognize and detect not only EMCs that are visible on the outer surface but also those that are buried deep inside the tooth. The 3D visualization, combined with DL assisted segmentation, enabled the evaluation of the dynamics of an EMC and precise examination of its position with respect to the dentin-enamel junction.


Asunto(s)
Diente Premolar/lesiones , Esmalte Dental/lesiones , Microtomografía por Rayos X/instrumentación , Algoritmos , Diente Premolar/diagnóstico por imagen , Aprendizaje Profundo , Esmalte Dental/diagnóstico por imagen , Humanos , Microtomografía por Rayos X/métodos
9.
Int J Oral Implantol (Berl) ; 14(2): 199-210, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-34006081

RESUMEN

PURPOSE: To assess the fit and cement gap of fixed partial dentures supported by two implants made using conventional and digital workflows. MATERIALS AND METHODS: Patients requiring fixed partial dentures supported by two implants were included in the study. Forty-eight zirconia fixed partial denture bars supported by two implants (AnyOne, MegaGen, Daegu, South Korea) were produced using a conventional (n = 24, group C) and digital (n = 24, group D) workflow. All implants had the same internal connection prosthetic platform. Silicone open tray impressions with splinted copings (group C) and digital impressions using a Trios 3 intraoral scanner (3Shape, Copenhagen, Denmark) (group D) were taken for each patient. The fit and cement gap were assessed by scanning electron microscopy on the verified master cast. The distance between reference points on the titanium base and implant analogue was measured with and without tightening the prosthetic screw. The difference in distance was calculated and represented the misfit (Dmisfit). The cement gap (Dcement) was measured as the shortest vertical distance from the inferior edge of the bar to the top edge of the titanium base. RESULTS: The median Dmisfit values (interquartile range) differed significantly (P < 0.05) between the groups, with 59 (60) µm for group C and 78 (88) µm for group D. Fixed partial dentures fabricated using a digital workflow presented lower Dcement values (35 [26] µm) than the conventional group (38.9 [23] µm) (P < 0.05). CONCLUSIONS: Both workflows produced different levels of fit and differently sized cement gaps when measured on the master casts using scanning electron microscopy. A cast-free digital workflow was associated with a smaller cement gap, but larger misfit was detected when measuring on the verified master cast.


Asunto(s)
Implantes Dentales , Tornillos Óseos , Humanos , Terranova y Labrador , República de Corea , Flujo de Trabajo , Circonio
10.
Polymers (Basel) ; 13(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809044

RESUMEN

The use of renewable sources for optical 3D printing instead of petroleum-based materials is increasingly growing. Combinations of photo- and thermal polymerization in dual curing processes can enhance the thermal and mechanical properties of the synthesized thermosets. Consequently, thiol-ene/thiol-epoxy polymers were obtained by combining UV and thermal curing of acrylated epoxidized soybean oil and epoxidized linseed oil with thiols, benzene-1,3-dithiol and pentaerythritol tetra(3-mercaptopropionate). Thiol-epoxy reaction was studied by calorimetry. The changes of rheological properties were examined during UV, thermal and dual curing to select the most suitable formulations for laser direct writing (LDW). The obtained polymers were characterized by dynamic-mechanical thermal analysis, thermogravimetry, and mechanical testing. The selected dual curable mixture was tested in LDW 3D lithography for validating its potential in optical micro- and nano-additive manufacturing. The obtained results demonstrated the suitability of epoxidized linseed oil as a biobased alternative to bisphenol A diglycidyl ether in thiol-epoxy thermal curing reactions. Dual cured thermosets showed higher rigidity, tensile strength, and Young's modulus values compared with UV-cured thiol-ene polymers and the highest thermal stability from all prepared polymers. LDW results proved their suitability for high resolution 3D printing-individual features reaching an unprecedented 100 nm for plant-based materials. Finally, the biobased resin was tested for thermal post-treatment and 50% feature downscaling was achieved.

11.
Am J Orthod Dentofacial Orthop ; 159(2): e103-e111, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33390312

RESUMEN

INTRODUCTION: Our aim was to assess changes in the number of enamel microcracks (EMCs) after removing metal brackets in teeth with and without visible EMCs before the bonding procedure. METHODS: Before bonding, 13 patients having teeth with visible EMCs and 13 subjects whose teeth were free of EMCs were included in the study. All patients were asked to complete a questionnaire with a detailed medical history at the beginning of treatment and after removing metal brackets. The number of teeth with visible EMCs and the number of premolars without EMCs were recorded for each subject twice, that is, before bonding and after debonding, together with the tooth sensitivity assessments elicited by compressed air and cold testing. RESULTS: The number of visible EMCs in premolars increased after removing metal brackets. EMCs were recorded in at least 25.0% of all evaluated teeth for the patients having teeth with and without visible EMCs at the beginning of treatment. However, the changes in the number of visible EMCs were not significantly different (P = 0.619) between the groups. For the subjects with visible EMCs, tooth sensitivity caused by cold was registered nearly 3 times more often after removing brackets compared with the patients without EMCs prior bonding. CONCLUSIONS: Formation of EMCs was noticed after debonding. Changes in the number appeared to be similar for the subjects with and without visible EMCs before bonding. Higher incidence of EMCs was associated with more frequent tooth sensitivity perceptions after removing brackets.


Asunto(s)
Recubrimiento Dental Adhesivo , Soportes Ortodóncicos , Diente Premolar , Cerámica , Desconsolidación Dental/efectos adversos , Esmalte Dental , Humanos , Soportes Ortodóncicos/efectos adversos
12.
Cartilage ; 13(2_suppl): 615S-625S, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-31072136

RESUMEN

OBJECTIVE: The objective of this study was to assess a novel 3D microstructured scaffold seeded with allogeneic chondrocytes (cells) in a rabbit osteochondral defect model. DESIGN: Direct laser writing lithography in pre-polymers was employed to fabricate custom silicon-zirconium containing hybrid organic-inorganic (HOI) polymer SZ2080 scaffolds of a predefined morphology. Hexagon-pored HOI scaffolds were seeded with chondrocytes (cells), and tissue-engineered cartilage biocompatibility, potency, efficacy, and shelf-life in vitro was assessed by morphological, ELISA (enzyme-linked immunosorbent assay) and PCR (polymerase chain reaction) analysis. Osteochondral defect was created in the weight-bearing area of medial femoral condyle for in vivo study. Polymerized fibrin was added to every defect of 5 experimental groups. Cartilage repair was analyzed after 6 months using macroscopical (Oswestry Arthroscopy Score [OAS]), histological, and electromechanical quantitative potential (QP) scores. Collagen scaffold (CS) was used as a positive comparator for in vitro and in vivo studies. RESULTS: Type II collagen gene upregulation and protein secretion was maintained up to 8 days in seeded HOI. In vivo analysis revealed improvement in all scaffold treatment groups. For the first time, electromechanical properties of a cellular-based scaffold were analyzed in a preclinical study. Cell addition did not enhance OAS but improved histological and QP scores in HOI groups. CONCLUSIONS: HOI material is biocompatible for up to 8 days in vitro and is supportive of cartilage formation at 6 months in vivo. Electromechanical measurement offers a reliable quality assessment of repaired cartilage.


Asunto(s)
Condrocitos , Andamios del Tejido , Animales , Condrocitos/metabolismo , Rayos Láser , Conejos , Ingeniería de Tejidos , Escritura
13.
Sci Rep ; 10(1): 9758, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546754

RESUMEN

Materials obtained from renewable sources are emerging to replace the starting materials of petroleum-derived plastics. They offer easy processing, fulfill technological, functional and durability requirements at the same time ensuring increased bio-compatibility, recycling, and eventually lower cost. On the other hand, optical 3D printing (O3DP) is a rapid prototyping tool (and an additive manufacturing technique) being developed as a choice for efficient and low waste production method, yet currently associated with mainly petroleum-derived resins. Here we employ a single bio-based resin derived from soy beans, suitable for O3DP in the scales from nano- to macro-dimensions, which can be processed even without the addition of photoinitiator. The approach is validated using both state-of-the art laser nanolithography setup as well as a widespread table-top 3D printer - sub-micrometer accuracy 3D objects are fabricated reproducibly. Additionally, chess-like figures are made in an industrial line commercially delivering small batch production services. Such concept is believed to make a breakthrough in rapid prototyping by switching the focus of O3DP to bio-based resins instead of being restricted to conventional petroleum-derived photopolymers.


Asunto(s)
Biopolímeros/química , Ingeniería Química/métodos , Resinas de Plantas/química , Plásticos/química , Polímeros/química , Impresión Tridimensional/instrumentación , Glycine max
14.
Opt Express ; 28(11): 16012-16026, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32549433

RESUMEN

The self-organised conical needles produced by plasma etching of silicon (Si), known as black silicon (b-Si), create a form-birefringent surface texture when etching of Si orientated at angles of θi < 50 - 70° (angle between the Si surface and vertical plasma E-field). The height of the needles in the form-birefringent region following 15 min etching was d ∼ 200 nm and had a 100 µm width of the optical retardance/birefringence, characterised using polariscopy. The height of the b-Si needles corresponds closely to the skin-depth of Si ∼λ/4 for the visible spectral range. Reflection-type polariscope with a voltage-controlled liquid-crystal retarder is proposed to directly measure the retardance Δn × d/λ ≈ 0.15 of the region with tilted b-Si needles. The quantified form birefringence of Δn = -0.45 over λ = 400 - 700 nm spectral window was obtained. Such high values of Δn at visible wavelengths can only be observed in the most birefringence calcite or barium borate as well as in liquid crystals. The replication of b-Si into Ni-shim with high fidelity was also demonstrated and can be used for imprinting of the b-Si nanopattern into other materials.

15.
Nanomaterials (Basel) ; 10(3)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106560

RESUMEN

A broadband graphene-on-Si3N4-membrane photodetector for the visible-IR spectral range is realised by simple lithography and deposition techniques. Photo-current is produced upon illumination due to presence of the build-in potential between dissimilar metal electrodes on graphene as a result of charge transfer. The sensitivity of the photo-detector is ∼ 1 . 1 µ A/W when irradiated with 515 and 1030 nm wavelengths; a smaller separation between the metal contacts favors gradient formation of the built-in electric field and increases the efficiency of charge separation. This optically-thin graphene-on-membrane photodetector and its interdigitated counterpart has the potential to be used within 3D optical elements, such as photonic crystals, sensors, and wearable electronics applications where there is a need to minimise optical losses introduced by the detector.

16.
Opt Lett ; 45(4): 980, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32058522

RESUMEN

This publisher's note contains corrections to Opt. Lett.45, 13 (2020).OPLEDP0146-959210.1364/OL.45.000013.

17.
Polymers (Basel) ; 12(2)2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050639

RESUMEN

The investigation of biobased systems as photocurable resins for optical 3D printing has attracted great attention in recent years; therefore, novel vanillin acrylate-based resins were designed and investigated. Cross-linked polymers were prepared by radical photopolymerization of vanillin derivatives (vanillin dimethacrylate and vanillin diacrylate) using ethyl(2,4,6-trimethylbenzoyl)phenylphosphinate as photoinitiator. The changes of rheological properties were examined during the curing with ultraviolet/visible irradiation to detect the influences of solvent, photoinitiator, and vanillin derivative on cross-linking rate and network formation. Vanillin diacrylate-based polymers had higher values of yield of insoluble fraction, thermal stability, and better mechanical properties in comparison to vanillin dimethacrylate-based polymers. Moreover, the vanillin diacrylate polymer film showed a significant antimicrobial effect, only a bit weaker than that of chitosan film. Thermal and mechanical properties of vanillin acrylate-based polymers were comparable with those of commercial petroleum-derived materials used in optical 3D printing. Also, vanillin diacrylate proved to be well-suited for optical printing as was demonstrated by employing direct laser writing 3D lithography and microtransfer molding techniques.

18.
J Mech Behav Biomed Mater ; 104: 103616, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31929097

RESUMEN

INTRODUCTION: In complex clinical conditions when physiological bone regeneration is insufficient, there is a need to develop synthetic material-based scaffolds. The morphologic properties of porous scaffolds are of crucial importance. The dimensional accuracy of 3D printed scaffolds can be affected by a variety of factors. MATERIALS AND METHODS: Three groups of 3D printed scaffolds were investigated: PLA1 (pure polylactic acid) printed with an FDM Ultimaker Original printer, PLA2 and composite PLA/hydroxyapatite (PLA/HAp) scaffolds printed with a Pharaoh XD 20. PLA/HAp filament was created with hot-melt extrusion (HME) equipment. The morphology of the prepared scaffolds was investigated with SEM, micro-CT and superimposition techniques, gravimetric and liquid displacement methods. RESULTS: Layer heights of PLA1 scaffolds varied the most. PLA1 scaffold volume statistically significantly differed from PLA2 (p < 0.001) and PLA/HAp (p < 0.01) groups. Filament composition had no effect on the volumes of the scaffolds printed with the Pharaoh XD 20 printer (p > 0.05). The total porosity of printed PLA/HAp scaffolds deviated the least from the original STL model. CONCLUSIONS: This study showed that PLA/10% HAp filament fabricated with HME and printed with FFF 3D printer produced equal or even better accuracy of printed scaffolds than scaffolds printed with pure PLA filament. Further research is needed to analyze the effect of HAp on 3D scaffold morphology, accuracy, mechanical and biologic properties.


Asunto(s)
Durapatita , Andamios del Tejido , Poliésteres , Porosidad , Impresión Tridimensional , Ingeniería de Tejidos
19.
Opt Express ; 27(11): 15205-15221, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163720

RESUMEN

3D meso scale structures that can reach up to centimeters in overall size but retain micro- or nano-features, proved to be promising in various science fields ranging from micro-mechanical metamaterials to photonics and bio-medical scaffolds. In this work, we present synchronization of the linear and galvanometric scanners for efficient femtosecond 3D optical printing of objects at the meso-scale (from sub-µm to sub-cm spanning five orders of magnitude). In such configuration, the linear stages provide stitch-free structuring at nearly limitless (up to tens-of-cm) working area, while galvo-scanners allow to achieve translation velocities in the range of mm/s-cm/s without sacrificing nano-scale positioning accuracy and preserving the undistorted shape of the final print. The principle behind this approach is demonstrated, proving its inherent advantages in comparison to separate use of only linear stages or scanners. The printing rate is calculated in terms of voxels/s, showcasing the capability to maintain an optimal feature size while increasing throughput. Full capabilities of this approach are demonstrated by fabricating structures that reach millimeters in size but still retain sub-µm features: scaffolds for cell growth, microlenses, and photonic crystals. All this is combined into a benchmark structure: a meso-butterfly. Provided results show that synchronization of two scan modes is crucial for the end goal of industrial-scale implementation of this technology and makes the laser printing well aligned with similar approaches in nanofabrication by electron and ion beams.

20.
Polymers (Basel) ; 11(1)2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30960100

RESUMEN

In this study, acrylated epoxidized soybean oil (AESO) and mixtures of AESO and vanillin dimethacrylate (VDM) or vanillin diacrylate (VDA) were investigated as photosensitive resins for optical 3D printing without any photoinitiator and solvent. The study of photocross-linking kinetics by real-time photorheometry revealed the higher rate of photocross-linking of pure AESO than that of AESO with VDM or VDA. Through the higher yield of the insoluble fraction, better thermal and mechanical properties were obtained for the pure AESO polymer. Here, for the first time, we validate that pure AESO and mixtures of AESO and VDM can be used for 3D microstructuring by employing direct laser writing lithography technique. The smallest achieved spatial features are 1 µm with a throughput in 6900 voxels per second is obtained. The plant-derived resins were laser polymerized using ultrashort pulses by multiphoton absorption and avalanche induced cross-linking without the usage of any photoinitiator. This advances the light-based additive manufacturing towards the 3D processing of pure cross-linkable renewable materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA