Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
ACS Infect Dis ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087267

RESUMEN

The control of malaria, a disease caused by Plasmodium parasites that kills over half a million people every year, is threatened by the continual emergence and spread of drug resistance. Therefore, new molecules with different mechanisms of action are needed in the antimalarial drug development pipeline. Peptides developed from host defense molecules are gaining traction as anti-infectives due to theood of inducing drug resistance. Human platelet factor 4 (PF4) has intrinsic activity against P. falciparum, and a macrocyclic helix-loop-helix peptide derived from its active domain recapitulates this activity. In this study, we used a stepwise approach to optimize first-generation PF4-derived internalization peptides (PDIPs) by producing analogues with substitutions to charged and hydrophobic amino acid residues or with modifications to terminal residues including backbone cyclization. We evaluated the in vitro activity of PDIP analogues against P. falciparum compared to their overall helical structure, resistance to breakdown by serum proteases, selective binding to negatively charged membranes, and hemolytic activity. Next, we combined antiplasmodial potency-enhancing substitutions that retained favorable membrane and cell-selective properties onto the most stable scaffold to produce a backbone cyclic PDIP analogue with four-fold improved activity against P. falciparum compared to first-generation peptides. These studies demonstrate the ability to modify PDIP to select for and combine desirable properties and further validate the suitability of this unique peptide scaffold for developing a new molecule class that is distinct from existing antimalarial drugs.

2.
Org Lett ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968424

RESUMEN

The peptide sex-inducing pheromone SIP+ (1) bearing an unusual sulfated aspartic acid residue induces sexual reproduction in diatom populations. Herein, we report the first total synthesis of SIP+ using both a sulfated building block approach and a solid-phase peptide synthesis (SPPS)-compatible late-stage sulfation strategy to assemble the natural product. The modular approaches provide concise routes to useful quantities of the natural product for future structure activity relationship studies examining the role of SIP+ in diatom biology.

3.
Angew Chem Int Ed Engl ; 62(50): e202313037, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37818778

RESUMEN

Mild strategies for the selective modification of peptides and proteins are in demand for applications in therapeutic peptide and protein discovery, and in the study of fundamental biomolecular processes. Herein, we describe the development of an electrochemical selenoetherification (e-SE) platform for the efficient site-selective functionalization of polypeptides. This methodology utilizes the unique reactivity of the 21st amino acid, selenocysteine, to effect formation of valuable bioconjugates through stable selenoether linkages under mild electrochemical conditions. The power of e-SE is highlighted through late-stage C-terminal modification of the FDA-approved cancer drug leuprolide and assembly of a library of anti-HER2 affibody conjugates bearing complex cargoes. Following assembly by e-SE, the utility of functionalized affibodies for in vitro imaging and targeting of HER2 positive breast and lung cancer cell lines is also demonstrated.


Asunto(s)
Antineoplásicos , Selenocisteína , Selenocisteína/química , Péptidos/química , Proteínas , Línea Celular
4.
Biochemistry ; 62(14): 2202-2215, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37368361

RESUMEN

Heparanase (HPSE) is the only mammalian endo-ß-glucuronidase known to catalyze the degradation of heparan sulfate. Dysfunction of HPSE activity has been linked to several disease states, resulting in HPSE becoming the target of numerous therapeutic programs, yet no drug has passed clinical trials to date. Pentosan polysulfate sodium (PPS) is a heterogeneous, FDA-approved drug for the treatment of interstitial cystitis and a known HPSE inhibitor. However, due to its heterogeneity, characterization of its mechanism of HPSE inhibition is challenging. Here, we show that inhibition of HPSE by PPS is complex, involving multiple overlapping binding events, each influenced by factors such as oligosaccharide length and inhibitor-induced changes in the protein secondary structure. The present work advances our molecular understanding of the inhibition of HPSE and will aid in the development of therapeutics for the treatment of a broad range of pathologies associated with enzyme dysfunction, including cancer, inflammatory disease, and viral infections.


Asunto(s)
Glucuronidasa , Heparitina Sulfato , Animales , Heparitina Sulfato/química , Glucuronidasa/química , Mamíferos/metabolismo
5.
Bioconjug Chem ; 34(6): 1105-1113, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37232456

RESUMEN

Malaria continues to impose a global health burden. Drug-resistant parasites have emerged to each introduced small-molecule therapy, highlighting the need for novel treatment approaches for the future eradication of malaria. Herein, targeted drug delivery with peptide-drug conjugates (PDCs) was investigated as an alternative antimalarial therapy, inspired by the success of emerging antibody-drug conjugates utilized in cancer treatment. A synthetic peptide derived from an innate human defense molecule was conjugated to the antimalarial drug primaquine (PQ) to produce PDCs with low micromolar potency toward Plasmodium falciparum in vitro. A suite of PDCs with different design features was developed to identify optimal conjugation site and investigate linker length, hydrophilicity, and cleavability. Conjugation within a flexible spacer region of the peptide, with a cleavable linker to liberate the PQ cargo, was important to retain activity of the peptide and drug.


Asunto(s)
Antimaláricos , Péptidos de Penetración Celular , Malaria Falciparum , Malaria , Humanos , Antimaláricos/farmacología , Antimaláricos/química , Péptidos de Penetración Celular/farmacología , Preparaciones Farmacéuticas , Primaquina/química , Primaquina/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/parasitología , Plasmodium falciparum , Malaria Falciparum/tratamiento farmacológico
6.
Org Lett ; 25(20): 3633-3638, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37184435

RESUMEN

Arylthioether functional groups serve as effective electroauxiliaries for tunable oxidations. Herein, we disclose the synthesis of second-generation glutamine building blocks bearing 2,4-dimethoxythiophenyl and 2,4-dichlorothiophenyl-derived electroauxiliaries. These building blocks improve SPPS efficiency and enable fine-tuning of the electrochemical window for selective anodic oxidation reactions in comparison to first-generation 4-methoxythiophenyl- and 4-nitrothiophenyl-substituted variants. Installation onto a segment of involucrin, a protein component of human skin, emphasizes the practical application of the new building blocks for iterative functionalizations.


Asunto(s)
Iminoácidos , Péptidos , Humanos , Oxidación-Reducción
7.
Org Lett ; 25(17): 3157-3162, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37093619

RESUMEN

A general approach to the synthesis of amino acid sulfinate salts from commercially available α-chiral hydroxylated amino acids is reported. These reagents are shown to be valuable precursors to alkyl radicals under mild photochemical oxidation conditions. The photochemically generated amino acid radicals engage readily with alkyl and aryl disulfide radical traps to afford a diverse suite of modified amino acids.

8.
Angew Chem Int Ed Engl ; 62(4): e202215470, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36336657

RESUMEN

Electrochemical transformations provide enticing opportunities for programmable, residue-specific peptide modifications. Herein, we harness the potential of amidic side-chains as underutilized handles for late-stage modification through the development of an electroauxiliary-assisted oxidation of glutamine residues within unprotected peptides. Glutamine building blocks bearing electroactive side-chain N,S-acetals are incorporated into peptides using standard Fmoc-SPPS. Anodic oxidation of the electroauxiliary in the presence of diverse alcohol nucleophiles enables the installation of high-value N,O-acetal functionalities. Proof-of-principle for an electrochemical peptide stapling protocol, as well as the functionalization of dynorphin B, an endogenous opioid peptide, demonstrates the applicability of the method to intricate peptide systems. Finally, the site-selective and tunable electrochemical modification of a peptide bearing two discretely oxidizable sites is achieved.


Asunto(s)
Glutamina , Péptidos , Péptidos/química , Técnicas de Síntesis en Fase Sólida/métodos
9.
J Org Chem ; 87(14): 9408-9413, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35758296

RESUMEN

An approach to diverse cross-benzoin and α-siloxy ketone products which leverages a simple yet underutilized C-C bond disconnection strategy is reported. Acyl substitution of readily accessible α-siloxy Weinreb amides with organolithium compounds enables access to a broad scope of aryl, heteroaryl, alkyl, alkenyl, and alkynyl derivatives. Enantiopure benzoins can be accessed via a chiral pool approach, and the utility of accessible cross-benzoins and α-siloxy ketones is highlighted in a suite of downstream synthetic applications.


Asunto(s)
Benzoína , Cetonas , Amidas/química , Benzoína/química , Cetonas/química
10.
Org Biomol Chem ; 20(31): 6250-6256, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35621075

RESUMEN

A two-component reductive amination approach to the synthesis of peptide macrocycles is reported which leverages the inherent reactivity of proteinogenic amine nucleophiles. Unprotected peptides bearing α-amine and side chain amine motifs undergo two-fold reductive amination reactions with 2,6-pyridinedialdehyde linkers in aqueous media to afford macrocyclic peptide products with backbone embedded pyridine motifs. Dialdehyde staples bearing valuable azide and alkyne handles also enable the post-cyclisation modification of peptides using copper-catalysed azide-alkyne cycloaddition (CuAAC) chemistry.


Asunto(s)
Alquinos , Azidas , Alquinos/química , Aminación , Aminas , Azidas/química , Catálisis , Cobre/química , Reacción de Cicloadición , Péptidos/química
11.
Org Lett ; 24(20): 3680-3685, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35575402

RESUMEN

The accelerating discovery of structurally distinct peptide natural products bearing α-thioether cross-links, such as the family of sactipeptide natural products, highlights the need for strategies to synthesize this underexplored functional motif. Herein, we describe the preparation of orthogonally protected, cross-linked amino acid α-thioether building blocks and probe their stability toward conventional solid-phase peptide synthesis. We overcome challenges with linkage lability by developing a late-stage, on-resin approach to α-thioethers, providing important proof-of-principle for sactipeptide synthesis.


Asunto(s)
Aminoácidos , Productos Biológicos , Péptidos/química , Técnicas de Síntesis en Fase Sólida , Sulfuros/química
12.
Chem Sci ; 13(10): 2809-2823, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35382479

RESUMEN

Umpolung strategies, defined as synthetic approaches which reverse commonly accepted reactivity patterns, are broadly recognized as enabling tools for small molecule synthesis and catalysis. However, methods which exploit this logic for peptide and protein functionalizations are comparatively rare, with the overwhelming majority of existing bioconjugation approaches relying on the well-established reactivity profiles of a handful of amino acids. This perspective serves to highlight a small but growing body of recent work that masterfully capitalizes on the concept of polarity reversal for the selective modification of proteinogenic functionalities. Current applications of umpolung chemistry in organic synthesis and chemical biology as well as the vast potential for further innovations in peptide and protein modification will be discussed.

13.
Org Lett ; 24(6): 1268-1273, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35014844

RESUMEN

Acyl bicyclobutanes are shown to engage in strain-promoted cycloaddition reactions with a diverse array of triazolinedione reagents. The synthesis of an orthogonally protected urazole building block enabled the facile preparation of amino acid- and peptide-derived triazolinediones that undergo cycloaddition reactions to afford novel peptide conjugates. The additive-free and fully atom-economical nature of the transformation is a promising starting point for the generalization of this cycloaddition reaction for the functionalization of biomolecules.


Asunto(s)
Compuestos Bicíclicos con Puentes/química , Péptidos/química , Triazoles/química , Aminoácidos/química , Reacción de Cicloadición , Estructura Molecular
14.
JACS Au ; 2(1): 169-177, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35098233

RESUMEN

Cobalt-mediated radical polymerizations (CMRPs) have been initiated by the radical decarboxylation of tetrachlorophthalimide activated esters. This allows for the controlled radical polymerization of activated monomers across a broad temperature range with a single cobalt species, with the incorporation of polymer end groups derived from simple carboxylic acid derivatives and termination with an organozinc reagent. This method has been applied to the synthesis of a polymer/graphene conjugate and a water-soluble protein/polymer conjugate, demonstrating the first examples of CMRP in graphene and protein conjugation.

15.
J Am Chem Soc ; 144(1): 23-41, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34968405

RESUMEN

Although electrochemical strategies for small-molecule synthesis are flourishing, this technology has yet to be fully exploited for the mild and chemoselective modification of peptides and proteins. With the growing number of diverse peptide natural products being identified and the emergence of modified proteins as therapeutic and diagnostic agents, methods for electrochemical modification stand as alluring prospects for harnessing the reactivity of polypeptides to build molecular complexity. As a mild and inherently tunable reaction platform, electrochemistry is arguably well-suited to overcome the chemo- and regioselectivity issues which limit existing bioconjugation strategies. This Perspective will showcase recently developed electrochemical approaches to peptide and protein modification. The article also highlights the wealth of untapped opportunities for the production of homogeneously modified biomolecules, with an eye toward realizing the enormous potential of electrochemistry for chemoselective bioconjugation chemistry.


Asunto(s)
Proteínas
16.
Methods Mol Biol ; 2355: 131-139, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34386956

RESUMEN

Modified peptides serve as promising therapeutic leads, valuable tools for chemical biology, and diverse functional materials. Synthetic strategies which enable the direct modification of native peptide sequences are particularly attractive for the rapid generation of designer peptides. This chapter details an operationally simple electrochemical approach to the modification of the peptide C-terminus, which proceeds via direct anodic oxidation of C-terminal peptide carboxylic acids. Electrochemical decarboxylation affords a key N,O-acetal intermediate, which can be engaged with various nucleophiles. Herein, step-by-step protocols for C-terminal arylation and sulfonylation are presented to highlight the utility of the method for the preparation of valuable functionalized peptides.


Asunto(s)
Péptidos/química , Secuencia de Aminoácidos , Ácidos Carboxílicos
17.
J Am Chem Soc ; 143(30): 11811-11819, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34288681

RESUMEN

Designer C-terminal peptide amides are accessed in an efficient and epimerization-free approach by pairing an electrochemical oxidative decarboxylation with a tandem hydrolysis/reduction pathway. Resembling Nature's dual enzymatic approach to bioactive primary α-amides, this method delivers secondary and tertiary amides bearing high-value functional motifs, including isotope labels and handles for bioconjugation. The protocol leverages the inherent reactivity of C-terminal carboxylates, is compatible with the vast majority of proteinogenic functional groups, and proceeds in the absence of epimerization, thus addressing major limitations associated with conventional coupling-based approaches. The utility of the method is exemplified through the synthesis of natural product acidiphilamide A via a key diastereoselective reduction, as well as bioactive peptides and associated analogues, including an anti-HIV lead peptide and blockbuster cancer therapeutic leuprolide.


Asunto(s)
Amidas/metabolismo , Técnicas Electroquímicas , Oxigenasas de Función Mixta/metabolismo , Complejos Multienzimáticos/metabolismo , Péptidos/metabolismo , Amidas/química , Oxigenasas de Función Mixta/química , Estructura Molecular , Complejos Multienzimáticos/química , Péptidos/química , Estereoisomerismo
18.
Chemistry ; 27(38): 9830-9838, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-33880824

RESUMEN

Although sulfated xylooligosaccharides are promising therapeutic leads for a multitude of afflictions, the structural complexity and heterogeneity of commercially deployed forms (e. g. Pentosan polysulfate 1) complicates their path to further clinical development. We describe herein the synthesis of the largest homogeneous persulfated xylooligomers prepared to date, comprising up to eight xylose residues, as standards for biological studies. Near quantitative sulfation was accomplished using a remarkably mild and operationally simple protocol which avoids the need for high temperatures and a large excess of the sulfating reagent. Moreover, the sulfated xylooligomer standards so obtained enabled definitive identification of a pyridinium contaminant in a sample of a commercially prepared Pentosan drug and provided significant insights into the conformational preferences of the constituent persulfated monosaccharide residues. As the spatial distribution of sulfates is a key determinant of the binding of sulfated oligosaccharides to endogenous targets, these findings have broad implications for the advancement of Pentosan-based treatments.


Asunto(s)
Oligosacáridos , Sulfatos , Glucuronatos , Poliéster Pentosan Sulfúrico
19.
Chem Sci ; 11(39): 10752-10758, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34094328

RESUMEN

The first total synthesis of cytotoxic cyanobacterial peptide natural products biseokeaniamides A-C is reported employing a robust solid-phase approach to peptide backbone construction followed by coupling of a key thiazole building block. To rapidly access natural product analogues, we have optimized an operationally simple electrochemical oxidative decarboxylation-nucleophilic addition pathway which exploits the reactivity of native C-terminal peptide carboxylates and abrogates the need for building block syntheses. Electrochemically-generated N,O-acetal intermediates are engaged with electron-rich aromatics and organometallic reagents to forge modified amino acids and peptides. The value of this late-stage modification method is highlighted by the expedient and divergent production of bioactive peptide analogues, including compounds which exhibit enhanced cytotoxicity relative to the biseokeaniamide natural products.

20.
Methods Mol Biol ; 2103: 275-285, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31879933

RESUMEN

The application of designer peptides in medicinal chemistry, chemical biology, and materials science has generated new interest in synthetic methods for the structural modification of amino acids. Strategies which facilitate the direct diversification of proteinogenic functional groups within unprotected peptide substrates are particularly attractive as they leverage modern solution- and solid-phase protocols-tools which are now both robust and routine-for the synthesis of native peptides. Accordingly, a recent approach to the decarboxylative functionalization of peptidic carboxylic acids, including aspartic/glutamic acid residues and α-carboxylic acids, has proven to be a promising new strategy for peptide modification. This synthetic method merges conventional strategies for the activation of carboxylic acids with transition metal-catalyzed cross-coupling chemistry to forge new C-C bonds for the late-stage introduction of valuable synthetic handles. This chapter details a step-by-step protocol for the activation and nickel-catalyzed decarboxylative alkylation of a simple peptide substrate to highlight the broad utility of this strategy for the synthesis of designer peptides.


Asunto(s)
Acoplamiento Oxidativo , Péptidos/síntesis química , Técnicas de Síntesis en Fase Sólida/métodos , Aminoácidos/química , Ácidos Carboxílicos/química , Descarboxilación , Ligandos , Metales/química , Níquel/química , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA