RESUMEN
Dipeptidyl peptidase 3 (DPP3), a zinc-dependent aminopeptidase, is a highly conserved enzyme among higher animals. The enzyme cleaves dipeptides from the N-terminus of tetra- to decapeptides, thereby taking part in activation as well as degradation of signalling peptides critical in physiological and pathological processes such as blood pressure regulation, nociception, inflammation and cancer. Besides its catalytic activity, DPP3 moonlights as a regulator of the cellular oxidative stress response pathway, e.g., the Keap1-Nrf2 mediated antioxidative response. The enzyme is also recognized as a key modulator of the renin-angiotensin system. Recently, DPP3 has been attracting growing attention within the scientific community, which has significantly augmented our knowledge of its physiological relevance. Herein, we review recent advances in our understanding of the structure and catalytic activity of DPP3, with a focus on attributing its molecular architecture and catalytic mechanism to its wide-ranging biological functions. We further highlight recent intriguing reports that implicate a broader role for DPP3 as a valuable biomarker in cardiovascular and renal pathologies and furthermore discuss its potential as a promising drug target.
Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Animales , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Riñón/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-ReducciónRESUMEN
Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase involved in degrading oligopeptides with 4-12 amino acid residues. It has been associated with several pathophysiological processes, including blood pressure regulation, pain signaling, and cancer cell defense against oxidative stress. However, the physiological substrates and the cellular pathways that are potentially targeted by DPP3 to mediate these effects remain unknown. Here, we show that global DPP3 deficiency in mice (DPP3-/-) affects the renin-angiotensin system (RAS). LC-MS-based profiling of circulating angiotensin peptides revealed elevated levels of angiotensin II, III, IV, and 1-5 in DPP3-/- mice, whereas blood pressure, renin activity, and aldosterone levels remained unchanged. Activity assays using the purified enzyme confirmed that angiotensin peptides are substrates for DPP3. Aberrant angiotensin signaling was associated with substantially higher water intake and increased renal reactive oxygen species formation in the kidneys of DPP3-/- mice. The metabolic changes and altered angiotensin levels observed in male DPP3-/- mice were either absent or attenuated in female DPP3-/- mice, indicating sex-specific differences. Taken together, our observations suggest that DPP3 regulates the RAS pathway and water homeostasis by degrading circulating angiotensin peptides.