Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Anat Rec (Hoboken) ; 304(4): 845-859, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32865310

RESUMEN

The comparative morphology of juvenile avian skulls is poorly known. Here, we survey the shape of the squamosal (os squamosum) across juvenile skulls of avian higher-level clades. In all palaeognathous birds, the rostral end of the squamosal does not surpass the parietal and does not reach the frontal. This morphology is likely to be plesiomorphic for neornithine birds. A short squamosal also occurs in some Neognathae, but in most neognathous birds the squamosal contacts the frontal, and in some taxa the bone is strongly elongated and distinctly surpasses the parietal. Some clades show a notable variation in squamosal morphology. This is, for example, true for Strigiformes, where the taxon Athene differs from the other examined owls in squamosal size, and for the Passeriformes, where Old World Suboscines are characterized by a distinctive squamosal morphology. A unique derived squamosal morphology is for the first time reported for the Apodidae and Hemiprocnidae, in which the bone forms a elongated rostral process that runs along most of the orbital rim. In non-avian theropods, the squamosal articulates with the postorbital and delimits the upper temporal opening. Extant birds lack a postorbital, but a topological correlation between the squamosal and the postorbital process is maintained in most taxa of the Neognathae. The phylogenetic significance of squamosal morphology is diminished by the fact that closely related taxa often show very disparate shapes of the bone, and squamosal morphology appears to be determined by multiple functional constraints including skull geometry, brain morphology and, possibly, nostril type.


Asunto(s)
Aves/anatomía & histología , Filogenia , Cráneo/anatomía & histología , Animales , Evolución Biológica
4.
Naturwissenschaften ; 91(4): 173-7, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15085274

RESUMEN

We report on the oldest European songbird (Passeriformes), from the early Oligocene (30-34 million years ago) of Frauenweiler in Germany. The specimen represents the earliest associated remains of an early Tertiary passerine described so far. It ties the first appearance of Passeriformes in Europe to a minimum age of 30 million years. Passeriform birds are absent in Eocene deposits that yielded abundant remains of small land birds and apparently dispersed into Europe around the Eocene/Oligocene boundary (about 34 million years ago), not at the Oligocene/Miocene boundary (about 24 mya) as hitherto thought. This possibly relates the appearance of songbirds in Europe to a well-known major faunistic break at the Eocene/Oligocene boundary, called the " grande coupure". The Frauenweiler songbird most notably differs from extant Passeriformes in having a larger processus procoracoideus on the coracoid and appears to be outside Eupasseres, the taxon which includes Oscines (all modern European and most Old World songbirds) and Suboscines (most South and Central American songbirds). It shows that there were earlier dispersal events of non-oscine songbirds into Europe before the arrival of Oscines from the Australian continental plate towards the late Oligocene.


Asunto(s)
Fósiles , Pájaros Cantores/anatomía & histología , Animales , Huesos/anatomía & histología , Europa (Continente) , Alemania , Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA