Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Commun ; 14(1): 746, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765091

RESUMEN

A substantial proportion of cancer patients do not benefit from platinum-based chemotherapy (CT) due to the emergence of drug resistance. Here, we apply elemental imaging to the mapping of CT biodistribution after therapy in residual colorectal cancer and achieve a comprehensive analysis of the genetic program induced by oxaliplatin-based CT in the tumor microenvironment. We show that oxaliplatin is largely retained by cancer-associated fibroblasts (CAFs) long time after the treatment ceased. We determine that CT accumulation in CAFs intensifies TGF-beta activity, leading to the production of multiple factors enhancing cancer aggressiveness. We establish periostin as a stromal marker of chemotherapeutic activity intrinsically upregulated in consensus molecular subtype 4 (CMS4) tumors and highly expressed before and/or after treatment in patients unresponsive to therapy. Collectively, our study underscores the ability of CT-retaining CAFs to support cancer progression and resistance to treatment.


Asunto(s)
Antineoplásicos , Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Humanos , Fibroblastos Asociados al Cáncer/patología , Oxaliplatino/farmacología , Distribución Tisular , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Microambiente Tumoral , Fibroblastos/patología , Línea Celular Tumoral
2.
Cancers (Basel) ; 14(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36551619

RESUMEN

Hypersialylation is a feature of pancreatic ductal adenocarcinoma (PDA) and it has been related to tumor malignancy and immune suppression. In this work, we have evaluated the potential of the sialyltransferase inhibitor, Ac53FaxNeu5Ac, to decrease tumor sialoglycans in PDA and to revert its malignant phenotype. Sialoglycans on PDA cells were evaluated by flow cytometry, and the functional impact of Ac53FaxNeu5Ac was assessed using E-selectin adhesion, migration, and invasion assays. PDA tumors were generated in syngeneic mice from KC cells and treated with Ac53FaxNeu5Ac to evaluate tumor growth, mice survival, and its impact on blocking sialic acid (SA) and on the tumor immune component. Ac53FaxNeu5Ac treatment on human PDA cells decreased α2,3-SA and sialyl-Lewisx, which resulted in a reduction in their E-selectin adhesion, and in their migratory and invasive capabilities. Subcutaneous murine tumors treated with Ac53FaxNeu5Ac reduced their volume, their SA expression, and modified their immune component, with an increase in CD8+ T-lymphocytes and NK cells. In conclusion, Ac53FaxNeu5Ac treatment weakened PDA cells' malignant phenotype, thereby reducing tumor growth while favoring anti-tumor immune surveillance. Altogether, these results show the positive impact of reducing SA expression by inhibiting cell sialyltransferases and open the way to use sialyltransferase inhibitors to target this dismal disease.

3.
Methods Mol Biol ; 2442: 685-711, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35320553

RESUMEN

Galectins have been linked to tumorigenesis since 1975, even before this family of proteins was given its name. Since then, hundreds of papers have analyzed the role of different galectins in cancer development and progression, deciphering their involvement in many different pathological events, from the regulation of cell cycle, to angiogenesis, metastasis, and immune attack evasion. Importantly, the tumor galectin profile is often altered in many cancers and aberrant levels of some of the members of this family have been considered in diagnosis and frequently correlated with patient prognosis and clinicopathological characteristics. In this chapter, we summarize most frequent techniques employed in cancer research to interrogate the role of galectins, using Gal-1 to illustrate one member of the family and pancreatic cancer as an experimental model. We will cover from techniques employed to detect their expression (tissue and blood samples) to the most frequent tools used to change expression levels and the cell line-based in vitro studies and murine preclinical models used to explore their role in tumor progression and/or clinical translation.


Asunto(s)
Galectinas , Neoplasias Pancreáticas , Animales , Carcinogénesis , Transformación Celular Neoplásica , Galectinas/genética , Galectinas/metabolismo , Humanos , Ratones , Neoplasias Experimentales/metabolismo , Neoplasias Pancreáticas/metabolismo
4.
Cancers (Basel) ; 14(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35205638

RESUMEN

Dyslipidemia, metabolic disorders and/or obesity are postulated as risk factors for pancreatic ductal adenocarcinoma (PDAC). The majority of patients with these metabolic alterations have low density lipoproteins (LDLs) with increased susceptibility to become aggregated in the extracellular matrix (ECM). LDL aggregation can be efficiently inhibited by low-density lipoprotein receptor-related protein 1 (LRP1)-based peptides. The objectives of this work were: (i) to determine if aggregated LDLs affect the intracellular cholesteryl ester (CE)/free cholesterol (FC) ratio and/or the tumor pancreatic cell proliferation, using sphingomyelinase-modified LDL particles (Aggregated LDL, AgLDL); and (ii) to test whether LRP1-based peptides, highly efficient against LDL aggregation, can interfere in these processes. For this, we exposed human pancreatic cancer cell lines (PANC-1, RWP-1 and Capan-1) to native (nLDL) or AgLDLs in the absence or presence of LRP1-based peptides (DP3) or irrelevant peptides (IP321). Results of thin-layer chromatography (TLC) following lipid extraction indicate that AgLDLs induce a higher intracellular CE/FC ratio than nLDL, and that DP3 but not IP321 counteracts this effect. AgLDLs also increase PANC-1 cell proliferation, which is inhibited by the DP3 peptide. Our results indicate that AgLDL-induced intracellular CE accumulation plays a crucial role in the proliferation of pancreatic tumor cell lines. Peptides with anti-LDL aggregation properties may thus exhibit anti-tumor effects.

5.
EBioMedicine ; 75: 103797, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34973624

RESUMEN

BACKGROUND: Early diagnosis is crucial for patients with pancreatic ductal adenocarcinoma (PDAC). The AXL receptor tyrosine kinase is proteolytically processed releasing a soluble form (sAXL) into the blood stream. Here we explore the use of sAXL as a biomarker for PDAC. METHODS: AXL was analysed by immunohistochemistry in human pancreatic tissue samples. RNA expression analysis was performed using TCGA/GTEx databases. The plasma concentrations of sAXL, its ligand GAS6, and CA19-9 were studied in two independent cohorts, the HMar cohort (n = 59) and the HClinic cohort (n = 142), including healthy controls, chronic pancreatitis (CP) or PDAC patients, and in a familial PDAC cohort (n = 68). AXL expression and sAXL release were studied in PDAC cell lines and murine models. FINDINGS: AXL is increased in PDAC and precursor lesions as compared to CP or controls. sAXL determined in plasma from two independent cohorts was significantly increased in the PDAC group as compared to healthy controls or CP patients. Patients with high levels of AXL have a lower overall survival. ROC analysis of the plasma levels of sAXL, GAS6, or CA19-9 in our cohorts revealed that sAXL outperformed CA19-9 for discriminating between CP and PDAC. Using both sAXL and CA19-9 increased the diagnostic value. These results were validated in murine models, showing increased sAXL specifically in animals developing PDAC but not those with precursor lesions or acinar tumours. INTERPRETATION: sAXL appears as a biomarker for early detection of PDAC and PDAC-CP discrimination that could accelerate treatment and improve its dismal prognosis. FUNDING: This work was supported by grants PI20/00625 (PN), RTI2018-095672-B-I00 (AM and PGF), PI20/01696 (MG) and PI18/01034 (AC) from MICINN-FEDER and grant 2017/SGR/225 (PN) from Generalitat de Catalunya.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis Crónica , Animales , Biomarcadores de Tumor , Antígeno CA-19-9 , Carcinoma Ductal Pancreático/diagnóstico , Diagnóstico Diferencial , Diagnóstico Precoz , Humanos , Péptidos y Proteínas de Señalización Intercelular , Ratones , Neoplasias Pancreáticas/diagnóstico , Pancreatitis Crónica/diagnóstico
6.
Cells ; 9(3)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32168866

RESUMEN

Galectins are a family of proteins that bind ß-galactose residues through a highly conserved carbohydrate recognition domain. They regulate several important biological functions, including cell proliferation, adhesion, migration, and invasion, and play critical roles during embryonic development and cell differentiation. In adults, different galectin members are expressed depending on the tissue type and can be altered during pathological processes. Numerous reports have shown the involvement of galectins in diseases, mostly inflammation and cancer. Here, we review the state-of-the-art of the role that different galectin family members play in pancreatic cancer. This tumor is predicted to become the second leading cause of cancer-related deaths in the next decade as there is still no effective treatment nor accurate diagnosis for it. We also discuss the possible translation of recent results about galectin expression and functions in pancreatic cancer into clinical interventions (i.e., diagnosis, prediction of prognosis and/or therapy) for this fatal disease.


Asunto(s)
Galectinas , Terapia Molecular Dirigida , Neoplasias Pancreáticas/tratamiento farmacológico , Galectinas/metabolismo , Galectinas/farmacología , Humanos , Terapia de Inmunosupresión/métodos , Inmunoterapia/métodos , Neoplasias Pancreáticas
7.
Med Res Rev ; 39(3): 887-909, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30421440

RESUMEN

Survivin is a small protein that belongs to the inhibitor of apoptosis protein family. It is abundantly expressed in tumors compared with adult differentiated tissues, being associated with poor prognosis in many human neoplasms. This apoptotic inhibitor has a relevant role in both the promotion of cancer cell survival and in the inhibition of cell death. Consequently, aberrant survivin expression stimulates tumor progression and confers resistance to several therapeutic strategies in a variety of tumors. In fact, efficient survivin downregulation or inhibition results in spontaneous apoptosis or sensitization to chemotherapy and radiotherapy. Therefore, all these features make survivin an attractive therapeutic target to treat cancer. Currently, there are several survivin inhibitors under clinical evaluation, although more specific and efficient survivin inhibitors are being developed. Moreover, novel combination regimens targeting survivin together with other therapeutic approaches are currently being designed and assessed. In this review, recent progress in the therapeutic options targeting survivin for cancer treatment is analyzed. Direct survivin inhibitors and their current development status are explored. Besides, the major signaling pathways implicated in survivin regulation are described and different therapeutic approaches involving survivin indirect inhibition are evaluated. Finally, promising novel inhibitors under preclinical or clinical evaluation as well as challenges of developing survivin inhibitors as a new therapy for cancer treatment are discussed.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias/terapia , Survivin/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología , Diferenciación Celular/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos , Survivin/química , Survivin/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA