Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Commun ; 13(1): 3084, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654893

RESUMEN

Mitochondrial protein import in the parasitic protozoan Trypanosoma brucei is mediated by the atypical outer membrane translocase, ATOM. It consists of seven subunits including ATOM69, the import receptor for hydrophobic proteins. Ablation of ATOM69, but not of any other subunit, triggers a unique quality control pathway resulting in the proteasomal degradation of non-imported mitochondrial proteins. The process requires a protein of unknown function, an E3 ubiquitin ligase and the ubiquitin-like protein (TbUbL1), which all are recruited to the mitochondrion upon ATOM69 depletion. TbUbL1 is a nuclear protein, a fraction of which is released to the cytosol upon triggering of the pathway. Nuclear release is essential as cytosolic TbUbL1 can bind mislocalised mitochondrial proteins and likely transfers them to the proteasome. Mitochondrial quality control has previously been studied in yeast and metazoans. Finding such a pathway in the highly diverged trypanosomes suggests such pathways are an obligate feature of all eukaryotes.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma , Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/metabolismo , Trypanosoma brucei brucei/metabolismo
2.
Mol Microbiol ; 112(6): 1731-1743, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31541487

RESUMEN

The mitochondrial contact site and cristae organization system (MICOS) mediates the formation of cristae, invaginations in the mitochondrial inner membrane. The highly diverged MICOS complex of the parasitic protist Trypanosoma brucei consists of nine subunits. Except for two Mic10-like and a Mic60-like protein, all subunits are specific for kinetoplastids. Here, we determined on a proteome-wide scale how ablation of individual MICOS subunits affects the levels of the other subunits. The results reveal co-regulation of TbMic10-1, TbMic10-2, TbMic16 and TbMic60, suggesting that these nonessential, integral inner membrane proteins form an interdependent network. Moreover, the ablation of TbMic34 and TbMic32 reveals another network consisting of the essential, intermembrane space-localized TbMic20, TbMic32, TbMic34 and TbMic40, all of which are peripherally associated with the inner membrane. The downregulation of TbMic20, TbMic32 and TbMic34 also interferes with mitochondrial protein import and reduces the size of the TbMic10-containing complexes. Thus, the diverged MICOS of trypanosomes contains two subcomplexes: a nonessential membrane-integrated one, organized around the conserved Mic10 and Mic60, that mediates cristae formation, and an essential membrane-peripheral one consisting of four kinetoplastid-specific subunits, that is required for import of intermembrane space proteins.


Asunto(s)
Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Trypanosoma brucei brucei/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Unión Proteica , Transporte de Proteínas , Trypanosoma/metabolismo , Trypanosoma/fisiología , Trypanosoma brucei brucei/fisiología
3.
Proc Natl Acad Sci U S A ; 114(37): E7679-E7687, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28847952

RESUMEN

Mitochondrial tRNA import is widespread, but the mechanism by which tRNAs are imported remains largely unknown. The mitochondrion of the parasitic protozoan Trypanosoma brucei lacks tRNA genes, and thus imports all tRNAs from the cytosol. Here we show that in T. brucei in vivo import of tRNAs requires four subunits of the mitochondrial outer membrane protein translocase but not the two receptor subunits, one of which is essential for protein import. The latter shows that it is possible to uncouple mitochondrial tRNA import from protein import. Ablation of the intermembrane space domain of the translocase subunit, archaic translocase of the outer membrane (ATOM)14, on the other hand, while not affecting the architecture of the translocase, impedes both protein and tRNA import. A protein import intermediate arrested in the translocation channel prevents both protein and tRNA import. In the presence of tRNA, blocking events of single-channel currents through the pore formed by recombinant ATOM40 were detected in electrophysiological recordings. These results indicate that both types of macromolecules use the same import channel across the outer membrane. However, while tRNA import depends on the core subunits of the protein import translocase, it does not require the protein import receptors, indicating that the two processes are not mechanistically linked.


Asunto(s)
Membranas Mitocondriales/fisiología , Transporte de Proteínas/fisiología , Transporte de ARN/fisiología , Proteínas Portadoras/metabolismo , Línea Celular , Citosol/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Mitocondrias/fisiología , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Conformación Proteica , ARN de Transferencia/metabolismo , ARN de Transferencia/fisiología , Trypanosoma/genética , Trypanosoma/metabolismo , Trypanosoma brucei brucei/genética
4.
Nat Commun ; 8: 15272, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28485388

RESUMEN

Protein import into organelles is essential for all eukaryotes and facilitated by multi-protein translocation machineries. Analysing whether a protein is transported into an organelle is largely restricted to single constituents. This renders knowledge about imported proteins incomplete, limiting our understanding of organellar biogenesis and function. Here we introduce a method that enables charting an organelle's importome. The approach relies on inducible RNAi-mediated knockdown of an essential subunit of a translocase to impair import and quantitative mass spectrometry. To highlight its potential, we established the mitochondrial importome of Trypanosoma brucei, comprising 1,120 proteins including 331 new candidates. Furthermore, the method allows for the identification of proteins with dual or multiple locations and the substrates of distinct protein import pathways. We demonstrate the specificity and versatility of this ImportOmics method by targeting import factors in mitochondria and glycosomes, which demonstrates its potential for globally studying protein import and inventories of organelles.


Asunto(s)
Espectrometría de Masas/métodos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteoma/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Técnicas de Silenciamiento del Gen , Microcuerpos/metabolismo , Membranas Mitocondriales/metabolismo , Transporte de Proteínas , Especificidad por Sustrato
5.
Sci Rep ; 7: 40738, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28094338

RESUMEN

The ß-barrel protein Tom40 and the α-helically anchored membrane protein Tom22 are the only universally conserved subunits of the protein translocase of the mitochondrial outer membrane (TOM). Tom22 has an N-terminal cytosolic and a C-terminal intermembrane space domain. It occurs in two variants: one typified by the yeast protein which has a cytosolic domain containing a cluster of acidic residues, and a shorter variant typified by the plant protein that lacks this domain. Yeast-type Tom22 functions as a secondary protein import receptor and is also required for the stability of the TOM complex. Much less is known about the more widespread short variant of Tom22, which is also found in the parasitic protozoan Trypanosoma brucei. Here we show that the intermembrane space domain of trypanosomal Tom22 binds mitochondrial precursor proteins and that it is essential for normal growth and mitochondrial protein import. Moreover, complementation experiments indicate that the intermembrane space domain cannot be replaced by the corresponding regions of the yeast or plant Tom22 orthologues. Lack or replacement of the short cytosolic domain, however, does not interfere with protein function. Finally, we show that only the membrane-spanning domain of trypanosomal Tom22 is essential for assembly of the trypanosomal TOM complex analogue.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Trypanosoma brucei brucei/metabolismo , Secuencia de Aminoácidos , Puntos de Control del Ciclo Celular/genética , Proteínas Fúngicas , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Complejos Multiproteicos/metabolismo , Proteínas de Plantas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Precursores de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Interferencia de ARN , Trypanosoma brucei brucei/genética
6.
J Biol Chem ; 292(8): 3400-3410, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28100781

RESUMEN

The mitochondrial outer membrane (OM) contains single and multiple membrane-spanning proteins that need to contain signals that ensure correct targeting and insertion into the OM. The biogenesis of such proteins has so far essentially only been studied in yeast and related organisms. Here we show that POMP10, an OM protein of the early diverging protozoan Trypanosoma brucei, is signal-anchored. Transgenic cells expressing variants of POMP10 fused to GFP demonstrate that the N-terminal membrane-spanning domain flanked by a few positively charged or neutral residues is both necessary and sufficient for mitochondrial targeting. Carbonate extraction experiments indicate that although the presence of neutral instead of positively charged residues did not interfere with POMP10 localization, it weakened its interaction with the OM. Expression of GFP-tagged POMP10 in inducible RNAi cell lines shows that its mitochondrial localization depends on pATOM36 but does not require Sam50 or ATOM40, the trypanosomal analogue of the Tom40 import pore. pATOM36 is a kinetoplastid-specific OM protein that has previously been implicated in the assembly of OM proteins and in mitochondrial DNA inheritance. In summary, our results show that although the features of the targeting signal in signal-anchored proteins are widely conserved, the protein machinery that mediates their biogenesis is not.


Asunto(s)
Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/análisis , Dominios Proteicos , Proteínas Protozoarias/análisis , Trypanosoma brucei brucei/citología
7.
Mol Microbiol ; 102(3): 520-529, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27501349

RESUMEN

TbLOK1 has previously been characterized as a trypanosomatid-specific mitochondrial outer membrane protein whose ablation caused a collapse of the mitochondrial network, disruption of the membrane potential and loss of mitochondrial DNA. Here we show that ablation of TbLOK1 primarily abolishes mitochondrial protein import, both in vivo and in vitro. Co-immunprecipitations together with blue native gel analysis demonstrate that TbLOK1 is a stable and stoichiometric component of the archaic protein translocase of the outer membrane (ATOM), the highly diverged functional analogue of the TOM complex in other organisms. Furthermore, we show that TbLOK1 together with the other ATOM subunits forms a complex functional network where ablation of individual subunits either causes degradation of a specific set of other subunits or their exclusion from the ATOM complex. In summary these results establish that TbLOK1 is an essential novel subunit of the ATOM complex and thus that its primary molecular function is linked to mitochondrial protein import across the outer membrane. The previously described phenotypes can all be explained as consequences of the lack of mitochondrial protein import. We therefore suggest that in line with the nomenclature of the ATOM complex subunits, TbLOK1 should be renamed to ATOM19.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Trypanosoma brucei brucei/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Subunidades de Proteína , Transporte de Proteínas/fisiología , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/genética
8.
Mol Biol Evol ; 33(2): 337-51, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26474847

RESUMEN

Mitochondria are essential for eukaryotic life and more than 95% of their proteins are imported as precursors from the cytosol. The targeting signals for this posttranslational import are conserved in all eukaryotes. However, this conservation does not hold true for the protein translocase of the mitochondrial outer membrane that serves as entry gate for essentially all precursor proteins. Only two of its subunits, Tom40 and Tom22, are conserved and thus likely were present in the last eukaryotic common ancestor. Tom7 is found in representatives of all supergroups except the Excavates. This suggests that it was added to the core of the translocase after the Excavates segregated from all other eukaryotes. A comparative analysis of the biochemically and functionally characterized outer membrane translocases of yeast, plants, and trypanosomes, which represent three eukaryotic supergroups, shows that the receptors that recognize the conserved import signals differ strongly between the different systems. They present a remarkable example of convergent evolution at the molecular level. The structural diversity of the functionally conserved import receptors therefore provides insight into the early evolutionary history of mitochondria.


Asunto(s)
Evolución Biológica , Eucariontes/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Eucariontes/clasificación , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas Mitocondriales/metabolismo , Familia de Multigenes , Complejos Multiproteicos , Plantas/metabolismo , Porinas/química , Porinas/metabolismo , Unión Proteica , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Simbiosis , Trypanosoma/metabolismo , Levaduras/metabolismo
9.
Nat Commun ; 6: 6646, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25808593

RESUMEN

Mitochondrial protein import is essential for all eukaryotes and mediated by hetero-oligomeric protein translocases thought to be conserved within all eukaryotes. We have identified and analysed the function and architecture of the non-conventional outer membrane (OM) protein translocase in the early diverging eukaryote Trypanosoma brucei. It consists of six subunits that show no obvious homology to translocase components of other species. Two subunits are import receptors that have a unique topology and unique protein domains and thus evolved independently of the prototype receptors Tom20 and Tom70. Our study suggests that protein import receptors were recruited to the core of the OM translocase after the divergence of the major eukaryotic supergroups. Moreover, it links the evolutionary history of mitochondrial protein import receptors to the origin of the eukaryotic supergroups.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Trypanosoma brucei brucei/genética , Evolución Biológica , Northern Blotting , Proteínas Portadoras/metabolismo , Línea Celular , Kinetoplastida/genética , Espectrometría de Masas , Microscopía Fluorescente , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Filogenia , Trypanosoma brucei brucei/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(21): 7624-9, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24821793

RESUMEN

Mitochondria cannot form de novo but require mechanisms allowing their inheritance to daughter cells. In contrast to most other eukaryotes Trypanosoma brucei has a single mitochondrion whose single-unit genome is physically connected to the flagellum. Here we identify a ß-barrel mitochondrial outer membrane protein, termed tripartite attachment complex 40 (TAC40), that localizes to this connection. TAC40 is essential for mitochondrial DNA inheritance and belongs to the mitochondrial porin protein family. However, it is not specifically related to any of the three subclasses of mitochondrial porins represented by the metabolite transporter voltage-dependent anion channel (VDAC), the protein translocator of the outer membrane 40 (TOM40), or the fungi-specific MDM10, a component of the endoplasmic reticulum-mitochondria encounter structure (ERMES). MDM10 and TAC40 mediate cellular architecture and participate in transmembrane complexes that are essential for mitochondrial DNA inheritance. In yeast MDM10, in the context of the ERMES, is postulated to connect the mitochondrial genomes to actin filaments, whereas in trypanosomes TAC40 mediates the linkage of the mitochondrial DNA to the basal body of the flagellum. However, TAC40 does not colocalize with trypanosomal orthologs of ERMES components and, unlike MDM10, it regulates neither mitochondrial morphology nor the assembly of the protein translocase. TAC40 therefore defines a novel subclass of mitochondrial porins that is distinct from VDAC, TOM40, and MDM10. However, whereas the architecture of the TAC40-containing complex in trypanosomes and the MDM10-containing ERMES in yeast is very different, both are organized around a ß-barrel protein of the mitochondrial porin family that mediates a DNA-cytoskeleton linkage that is essential for mitochondrial DNA inheritance.


Asunto(s)
Genes Mitocondriales/genética , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Modelos Biológicos , Porinas/genética , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética , Secuencia de Bases , Línea Celular , Análisis por Conglomerados , Citoesqueleto/metabolismo , ADN Mitocondrial/metabolismo , Técnica del Anticuerpo Fluorescente , Espectrometría de Masas , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Organismos Modificados Genéticamente , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia
11.
Mol Microbiol ; 90(4): 744-55, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24033548

RESUMEN

Mitochondrial translation in the parasitic protozoan Trypanosoma brucei relies on imported eukaryotic-type tRNAs as well as on bacterial-type ribosomes that have the shortest known rRNAs. Here we have identified the mitochondrial translation elongation factors EF-Tu, EF-Ts, EF-G1 and release factor RF1 of trypanosomatids and show that their ablation impairs growth and oxidative phosphorylation. In vivo labelling experiments and a SILAC-based analysis of the global proteomic changes induced by EF-Tu RNAi directly link EF-Tu to mitochondrial translation. Moreover, EF-Tu RNAi reveals downregulation of many nuclear encoded subunits of cytochrome oxidase as well as of components of the bc1-complex, whereas most cytosolic ribosomal proteins were upregulated. Interestingly, T. brucei EF-Tu has a 30-amino-acid-long, highly charged subdomain, which is unique to trypanosomatids. A combination of RNAi and complementation experiments shows that this subdomain is essential for EF-Tu function, but that it can be replaced by a similar sequence found in eukaryotic EF-1a, the cytosolic counterpart of EF-Tu. A recent cryo-electron microscopy study revealed that trypanosomatid mitochondrial ribosomes have a unique intersubunit space that likely harbours the EF-Tu binding site. These findings suggest that the trypanosomatid-specific EF-Tu subdomain serves as an adaption for binding to these unusual mitochondrial ribosomes.


Asunto(s)
Secuencias de Aminoácidos , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Factor Tu de Elongación Peptídica/química , Proteínas Protozoarias/química , Ribosomas/metabolismo , Trypanosoma brucei brucei/metabolismo , Secuencia de Aminoácidos , Línea Celular , Complejo IV de Transporte de Electrones/metabolismo , Regulación de la Expresión Génica , Mitocondrias/genética , Proteínas Mitocondriales/fisiología , Datos de Secuencia Molecular , Mutación , Fosforilación Oxidativa , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/fisiología , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Proteómica , Proteínas Protozoarias/genética , Proteínas Protozoarias/fisiología , Interferencia de ARN , Alineación de Secuencia , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crecimiento & desarrollo
12.
Mol Cell Proteomics ; 12(2): 515-28, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23221899

RESUMEN

Trypanosoma brucei is a unicellular parasite that causes devastating diseases in humans and animals. It diverged from most other eukaryotes very early in evolution and, as a consequence, has an unusual mitochondrial biology. Moreover, mitochondrial functions and morphology are highly regulated throughout the life cycle of the parasite. The outer mitochondrial membrane defines the boundary of the organelle. Its properties are therefore key for understanding how the cytosol and mitochondria communicate and how the organelle is integrated into the metabolism of the whole cell. We have purified the mitochondrial outer membrane of T. brucei and characterized its proteome using label-free quantitative mass spectrometry for protein abundance profiling in combination with statistical analysis. Our results show that the trypanosomal outer membrane proteome consists of 82 proteins, two-thirds of which have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins, 33 of which are specific to trypanosomatids, remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of procyclic cells and for the first time identified factors that control mitochondrial shape in T. brucei.


Asunto(s)
Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteoma/genética , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Estadios del Ciclo de Vida/genética , Mitocondrias/genética , Membranas Mitocondriales/química , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo , Forma de los Orgánulos/genética , Proteoma/antagonistas & inhibidores , Proteoma/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , ARN Interferente Pequeño/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espectrometría de Masas en Tándem , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/metabolismo
13.
Mol Biochem Parasitol ; 185(2): 161-4, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22841752

RESUMEN

Most mitochondrial matrix and inner membrane proteins have N-terminal presequences which serve as import signals. After import these presequences are cleaved by the heterodimeric mitochondrial processing peptidase. In the parasitic protozoa Trypanosoma brucei mitochondrial protein import relies on presequences that are much shorter than in other eukaryotes. How they are processed is unknown. The trypansomal genome encodes four open reading frames that are annotated as mitochondrial processing peptidase. Here we show that RNAi-mediated ablation of two of these proteins leads to a growth arrest and a concomitant accumulation of mitochondrial precursor proteins inside mitochondria. Import experiments using isolated mitochondria from RNAi cell lines reveals that both proteins are required for efficient import and processing of the tested precursor protein. Reciprocal immunoprecipitation demonstrates that the proteins interact with each other. In summary these results show that we have identified the two subunits of the trypanosomal mitochondrial processing peptidase.


Asunto(s)
Metaloendopeptidasas/metabolismo , Mitocondrias/metabolismo , Subunidades de Proteína/metabolismo , Trypanosoma brucei brucei/enzimología , Secuencia de Aminoácidos , Animales , Transporte Biológico , Metaloendopeptidasas/química , Metaloendopeptidasas/genética , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/química , Subunidades de Proteína/genética , Trypanosoma brucei brucei/genética , Peptidasa de Procesamiento Mitocondrial
14.
Mol Biol Cell ; 23(17): 3420-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22787278

RESUMEN

The mitochondrial outer membrane protein Tom40 is the general entry gate for imported proteins in essentially all eukaryotes. Trypanosomatids lack Tom40, however, and use instead a protein termed the archaic translocase of the outer mitochondrial membrane (ATOM). Here we report the discovery of pATOM36, a novel essential component of the trypanosomal outer membrane protein import system that interacts with ATOM. pATOM36 is not related to known Tom proteins from other organisms and mediates the import of matrix proteins. However, there is a group of precursor proteins whose import is independent of pATOM36. Domain-swapping experiments indicate that the N-terminal presequence-containing domain of the substrate proteins at least in part determines the dependence on pATOM36. Secondary structure profiling suggests that pATOM36 is composed largely of α-helices and its assembly into the outer membrane is independent of the sorting and assembly machinery complex. Taken together, these results show that pATOM36 is a novel component associated with the ATOM complex that promotes the import of a subpopulation of proteins into the mitochondrial matrix.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Línea Celular , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Interferencia de ARN , ARN Interferente Pequeño , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/ultraestructura
15.
PLoS One ; 6(7): e22463, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21811616

RESUMEN

Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs). GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut) forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE) is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A) RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A) binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are also consistent with stage-specific regulation of translation in trypanosomes, but most likely in the context of initiation.


Asunto(s)
Citoplasma/metabolismo , Biosíntesis de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Trypanosoma brucei brucei/metabolismo , Cromatografía de Afinidad , Gránulos Citoplasmáticos/metabolismo , Inmunoprecipitación , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Filogenia , Unión Proteica , Transporte de Proteínas , Proteínas Protozoarias/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Secuencias Reguladoras de Ácido Ribonucleico/genética
16.
PLoS Pathog ; 6(8): e1001037, 2010 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-20700444

RESUMEN

Trans-splicing of leader sequences onto the 5'ends of mRNAs is a widespread phenomenon in protozoa, nematodes and some chordates. Using parallel sequencing we have developed a method to simultaneously map 5'splice sites and analyze the corresponding gene expression profile, that we term spliced leader trapping (SLT). The method can be applied to any organism with a sequenced genome and trans-splicing of a conserved leader sequence. We analyzed the expression profiles and splicing patterns of bloodstream and insect forms of the parasite Trypanosoma brucei. We detected the 5' splice sites of 85% of the annotated protein-coding genes and, contrary to previous reports, found up to 40% of transcripts to be differentially expressed. Furthermore, we discovered more than 2500 alternative splicing events, many of which appear to be stage-regulated. Based on our findings we hypothesize that alternatively spliced transcripts present a new means of regulating gene expression and could potentially contribute to protein diversity in the parasite. The entire dataset can be accessed online at TriTrypDB or through: http://splicer.unibe.ch/.


Asunto(s)
Empalme Alternativo/genética , Perfilación de la Expresión Génica/métodos , Genes Protozoarios/genética , ARN Lider Empalmado/genética , Trypanosoma brucei brucei/genética , Regiones no Traducidas 5'/genética , Secuencia de Bases , Expresión Génica , Biblioteca de Genes , Datos de Secuencia Molecular , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Plant Mol Biol ; 67(3): 243-56, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18301989

RESUMEN

Type C stay-green mutants are defined as being defective in the pathway of chlorophyll breakdown, which involves pheophorbide a oxygenase (PAO), required for loss of green color. By analyzing senescence parameters, such as protein degradation, expression of senescence-associated genes and loss of photosynthetic capacity, we demonstrate that JI2775, the green cotyledon (i) pea line used by Gregor Mendel to establish the law of genetics, is a true type C stay-green mutant. STAY-GREEN (SGR) had earlier been shown to map to the I locus. The defect in JI2775 is due to both reduced expression of SGR and loss of SGR protein function. Regulation of PAO through SGR had been proposed. By determining PAO protein abundance and activity, we show that PAO is unaffected in JI2775. Furthermore we show that pheophorbide a accumulation in the mutant is independent of PAO. When silencing SGR expression in Arabidopsis pao1 mutant, both pheophorbide a accumulation and cell death phenotype, typical features of pao1, are lost. These results confirm that SGR function within the chlorophyll catabolic pathway is independent and upstream of PAO.


Asunto(s)
Clorofila/metabolismo , Cotiledón/enzimología , Oxigenasas/genética , Oxigenasas/metabolismo , Pisum sativum/enzimología , Pisum sativum/genética , Dióxido de Carbono/metabolismo , Senescencia Celular , Clorofilidas/metabolismo , Clonación Molecular , Cotiledón/genética , Cartilla de ADN , Hojas de la Planta/enzimología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Science ; 315(5808): 73, 2007 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-17204643

RESUMEN

A key gene involved in plant senescence, mutations of which partially disable chlorophyll catabolism and confer stay-green leaf and cotyledon phenotypes, has been identified in Pisum sativum, Arabidopsis thaliana, and Festuca pratensis by using classical and molecular genetics and comparative genomics. A stay-green locus in F. pratensis is syntenically equivalent to a similar stay-green locus on rice chromosome 9. Functional testing in Arabidopsis of a homolog of the rice candidate gene revealed (i) senescence-associated gene expression and (ii) a stay-green phenotype after RNA interference silencing. Genetic mapping in pea demonstrated cosegregation with the yellow/green cotyledon polymorphism (I/i) first reported by Gregor Mendel in 1866.


Asunto(s)
Arabidopsis/genética , Clorofila/metabolismo , Festuca/genética , Genes de Plantas , Pisum sativum/genética , Secuencia de Aminoácidos , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Clorofila/análisis , Mapeo Cromosómico , Cotiledón/fisiología , Festuca/fisiología , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Pisum sativum/fisiología , Fenotipo , Hojas de la Planta/fisiología , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA