Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
RNA ; 30(9): 1122-1140, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38986572

RESUMEN

The cleavage and polyadenylation specificity factor (CPSF) complex plays a central role in the formation of mRNA 3' ends, being responsible for the recognition of the poly(A) signal sequence, the endonucleolytic cleavage step, and recruitment of poly(A) polymerase. CPSF has been extensively studied for over three decades, and its functions and those of its individual subunits are becoming increasingly well-defined, with much current research focusing on the impact of these proteins on the normal functioning or disease/stress states of cells. In this review, we provide an overview of the general functions of CPSF and its subunits, followed by a discussion of how they exert their functions in a surprisingly diverse variety of biological processes and cellular conditions. These include transcription termination, small RNA processing, and R-loop prevention/resolution, as well as more generally cancer, differentiation/development, and infection/immunity.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación , ARN Mensajero , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Animales , Poliadenilación , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Terminación de la Transcripción Genética , Procesamiento de Término de ARN 3'
2.
Blood Adv ; 8(15): 3961-3971, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38759096

RESUMEN

ABSTRACT: Among the most common genetic alterations in myelodysplastic syndromes (MDS) are mutations in the spliceosome gene SF3B1. Such mutations induce specific RNA missplicing events, directly promote ring sideroblast (RS) formation, and generally associate with a more favorable prognosis. However, not all SF3B1 mutations are the same, and little is known about how distinct hotspots influence disease. Here, we report that the E592K variant of SF3B1 associates with high-risk disease features in MDS, including a lack of RS, increased myeloblasts, a distinct comutation pattern, and a lack of favorable survival seen with other SF3B1 mutations. Moreover, compared with other hot spot SF3B1 mutations, E592K induces a unique RNA missplicing pattern, retains an interaction with the splicing factor SUGP1, and preserves normal RNA splicing of the sideroblastic anemia genes TMEM14C and ABCB7. These data have implications for our understanding of the functional diversity of spliceosome mutations, as well as the pathobiology, classification, prognosis, and management of SF3B1-mutant MDS.


Asunto(s)
Síndromes Mielodisplásicos , Fosfoproteínas , Factores de Empalme de ARN , Empalme del ARN , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Humanos , Síndromes Mielodisplásicos/genética , Fosfoproteínas/genética , Mutación , Anemia Sideroblástica/genética , Femenino , Pronóstico , Anciano , Masculino
3.
Cell Rep ; 43(3): 113886, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38430516

RESUMEN

The human WDR33 gene encodes three major isoforms. The canonical isoform WDR33v1 (V1) is a well-characterized nuclear mRNA polyadenylation factor, while the other two, WDR33v2 (V2) and WDR33v3 (V3), have not been studied. Here, we report that V2 and V3 are generated by alternative polyadenylation, and neither protein contains all seven WD (tryptophan-aspartic acid) repeats that characterize V1. Surprisingly, V2 and V3 are not polyadenylation factors but localize to the endoplasmic reticulum and interact with stimulator of interferon genes (STING), the immune factor that induces the cellular response to cytosolic double-stranded DNA. V2 suppresses interferon-ß induction by preventing STING disulfide oligomerization but promotes autophagy, likely by recruiting WIPI2 isoforms. V3, on the other hand, functions to increase STING protein levels. Our study has not only provided mechanistic insights into STING regulation but also revealed that protein isoforms can be functionally completely unrelated, indicating that alternative mRNA processing is a more powerful mechanism than previously appreciated.


Asunto(s)
Poliadenilación , Factores de Escisión y Poliadenilación de ARNm , Humanos , Factores de Escisión y Poliadenilación de ARNm/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inmunidad Innata
4.
Genes Dev ; 37(21-24): 968-983, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-37977822

RESUMEN

The spliceosomal gene SF3B1 is frequently mutated in cancer. While it is known that SF3B1 hotspot mutations lead to loss of splicing factor SUGP1 from spliceosomes, the cancer-relevant SF3B1-SUGP1 interaction has not been characterized. To address this issue, we show by structural modeling that two regions flanking the SUGP1 G-patch make numerous contacts with the region of SF3B1 harboring hotspot mutations. Experiments confirmed that all the cancer-associated mutations in these regions, as well as mutations affecting other residues in the SF3B1-SUGP1 interface, not only weaken or disrupt the interaction but also alter splicing similarly to SF3B1 cancer mutations. Finally, structural modeling of a trimeric protein complex reveals that the SF3B1-SUGP1 interaction "loops out" the G-patch for interaction with the helicase DHX15. Our study thus provides an unprecedented molecular view of a protein complex essential for accurate splicing and also reveals that numerous cancer-associated mutations disrupt the critical SF3B1-SUGP1 interaction.


Asunto(s)
Neoplasias , Empalmosomas , Humanos , ARN Mensajero/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo , Factores de Empalme de ARN/química , Empalme del ARN/genética , Neoplasias/genética , Neoplasias/metabolismo , Mutación , Fosfoproteínas/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(9): e2221109120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812203

RESUMEN

Certain long non-coding RNAs (lncRNAs) are known to contain small open reading frames that can be translated. Here we describe a much larger 25 kDa human protein, "Ribosomal IGS Encoded Protein" (RIEP), that remarkably is encoded by the well-characterized RNA polymerase (RNAP) II-transcribed nucleolar "promoter and pre-rRNA antisense" lncRNA (PAPAS). Strikingly, RIEP, which is conserved throughout primates but not found in other species, predominantly localizes to the nucleolus as well as mitochondria, but both exogenously expressed and endogenous RIEP increase in the nuclear and perinuclear regions upon heat shock (HS). RIEP associates specifically with the rDNA locus, increases levels of the RNA:DNA helicase Senataxin, and functions to sharply reduce DNA damage induced by heat shock. Proteomics analysis identified two mitochondrial proteins, C1QBP and CHCHD2, both known to have mitochondrial and nuclear functions, that we show interact directly, and relocalize following heat shock, with RIEP. Finally, it is especially notable that the rDNA sequences encoding RIEP are multifunctional, giving rise to an RNA that functions both as RIEP messenger RNA (mRNA) and as PAPAS lncRNA, as well as containing the promoter sequences responsible for rRNA synthesis by RNAP I. Our work has thus not only shown that a nucleolar "non-coding" RNA in fact encodes a protein, but also established a novel link between mitochondria and nucleoli that contributes to the cellular stress response.


Asunto(s)
ARN Largo no Codificante , Animales , Humanos , ARN Largo no Codificante/metabolismo , Transcripción Genética , ADN Ribosómico/genética , Nucléolo Celular/metabolismo , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , Proteínas Ribosómicas/metabolismo , ARN no Traducido/metabolismo , ARN Ribosómico/genética , Proteínas Portadoras/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(49): e2216712119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36459648

RESUMEN

SF3B1 is the most frequently mutated spliceosomal gene in cancer. Several hotspot mutations are known to disrupt the interaction of SF3B1 with another splicing factor, SUGP1, resulting in the RNA missplicing that characterizes mutant SF3B1 cancers. Properties of SUGP1, especially the presence of a G-patch motif, a structure known to function by activating DEAH-box RNA helicases, suggest the requirement of such an enzyme in SUGP1 function in splicing. However, the identity of this putative helicase has remained an important unanswered question. Here, using a variety of protein-protein interaction assays, we identify DHX15 as the critical helicase. We further show that depletion of DHX15 or expression of any of several DHX15 mutants, including one implicated in acute myeloid leukemia, partially recapitulates the splicing defects of mutant SF3B1. Moreover, a DHX15-SUGP1 G-patch fusion protein is able to incorporate into the spliceosome to rescue the splicing defects of mutant SF3B1. We also present the crystal structure of the human DHX15-SUGP1 G-patch complex, which reveals the molecular basis of their direct interaction. Our data thus demonstrate that DHX15 is the RNA helicase that functions with SUGP1 and additionally provide important insight into how mutant SF3B1 disrupts splicing in cancer.


Asunto(s)
Neoplasias , ARN Helicasas , Factores de Empalme de ARN , Empalme del ARN , Humanos , ADN Helicasas , Genes Reguladores , Fosfoproteínas , ARN Helicasas/genética , Empalme del ARN/genética , Factores de Empalme de ARN/genética , Empalmosomas/genética
7.
Genes Dev ; 36(15-16): 876-886, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36207140

RESUMEN

Nucleoli are the major cellular compartments for the synthesis of rRNA and assembly of ribosomes, the macromolecular complexes responsible for protein synthesis. Given the abundance of ribosomes, there is a huge demand for rRNA, which indeed constitutes ∼80% of the mass of RNA in the cell. Thus, nucleoli are characterized by extensive transcription of multiple rDNA loci by the dedicated polymerase, RNA polymerase (Pol) I. However, in addition to producing rRNAs, there is considerable additional transcription in nucleoli by RNA Pol II as well as Pol I, producing multiple noncoding (nc) and, in one instance, coding RNAs. In this review, we discuss important features of these transcripts, which often appear species-specific and reflect transcription antisense to pre-rRNA by Pol II and within the intergenic spacer regions on both strands by both Pol I and Pol II. We discuss how expression of these RNAs is regulated, their propensity to form cotranscriptional R loops, and how they modulate rRNA transcription, nucleolar structure, and cellular homeostasis more generally.


Asunto(s)
ARN Polimerasa II , Precursores del ARN , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , ADN Intergénico , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Homeostasis/genética , Sustancias Macromoleculares/metabolismo , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , Precursores del ARN/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Transcripción Genética
8.
Sci Rep ; 12(1): 8180, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581240

RESUMEN

Fused in Sarcoma (FUS) is a nuclear RNA/DNA binding protein that mislocalizes to the cytoplasm in the neurodegenerative diseases ALS and FTD. Despite the existence of FUS pathogenic mutations that result in nuclear import defects, a subset of ALS/FTD patients display cytoplasmic accumulation of wild-type FUS, although the underlying mechanism is unclear. Here we confirm that transcriptional inhibition, specifically of RNA polymerase II (RNAP II), induces FUS cytoplasmic translocation, but we show that several other stresses do not. We found unexpectedly that the epitope specificity of different FUS antibodies significantly affects the apparent FUS nucleocytoplasmic ratio as determined by immunofluorescence, explaining inconsistent observations in previous studies. Significantly, depletion of the nuclear mRNA export factor NXF1 or RNA exosome cofactor MTR4 promotes FUS nuclear retention, even when transcription is repressed, while mislocalization was independent of the nuclear protein export factor CRM1 and import factor TNPO1. Finally, we report that levels of nascent RNAP II transcripts, including those known to bind FUS, are reduced in sporadic ALS iPS cells, linking possible aberrant transcriptional control and FUS cytoplasmic mislocalization. Our findings thus reveal that factors that influence accumulation of nuclear RNAP II transcripts modulate FUS nucleocytoplasmic homeostasis, and provide evidence that reduced RNAP II transcription can contribute to FUS mislocalization to the cytoplasm in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Proteína FUS de Unión a ARN , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Citoplasma/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Mutación , ARN Nuclear/genética , ARN Nuclear/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34930825

RESUMEN

SF3B1 is the most frequently mutated RNA splicing factor in cancer, including in ∼25% of myelodysplastic syndromes (MDS) patients. SF3B1-mutated MDS, which is strongly associated with ringed sideroblast morphology, is characterized by ineffective erythropoiesis, leading to severe, often fatal anemia. However, functional evidence linking SF3B1 mutations to the anemia described in MDS patients harboring this genetic aberration is weak, and the underlying mechanism is completely unknown. Using isogenic SF3B1 WT and mutant cell lines, normal human CD34 cells, and MDS patient cells, we define a previously unrecognized role of the kinase MAP3K7, encoded by a known mutant SF3B1-targeted transcript, in controlling proper terminal erythroid differentiation, and show how MAP3K7 missplicing leads to the anemia characteristic of SF3B1-mutated MDS, although not to ringed sideroblast formation. We found that p38 MAPK is deactivated in SF3B1 mutant isogenic and patient cells and that MAP3K7 is an upstream positive effector of p38 MAPK. We demonstrate that disruption of this MAP3K7-p38 MAPK pathway leads to premature down-regulation of GATA1, a master regulator of erythroid differentiation, and that this is sufficient to trigger accelerated differentiation, erythroid hyperplasia, and ultimately apoptosis. Our findings thus define the mechanism leading to the severe anemia found in MDS patients harboring SF3B1 mutations.


Asunto(s)
Anemia/metabolismo , Eritropoyesis , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Mutación , Síndromes Mielodisplásicos/metabolismo , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Anemia/genética , Anemia/patología , Diferenciación Celular/genética , Células Eritroides/metabolismo , Células Eritroides/patología , Humanos , Células K562 , Quinasas Quinasa Quinasa PAM/genética , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Fosfoproteínas/genética , Factores de Empalme de ARN/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Transcription ; 12(5): 277-293, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34874799

RESUMEN

The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) consists of YSPTSPS heptapeptide repeats, and the phosphorylation status of the repeats controls multiple transcriptional steps and co-transcriptional events. However, how CTD phosphorylation status responds to distinct environmental stresses is not fully understood. In this study, we found that a drastic reduction in phosphorylation of a subset of Ser2 residues occurs rapidly but transiently following exposure to H2O2. ChIP analysis indicated that Ser2-P, and to a lesser extent Tyr1-P was reduced only at the gene 3' end. Significantly, the levels of polyadenylation factor CstF77, as well as Pol II, were also reduced. However, no increase in uncleaved or readthrough RNA products was observed, suggesting transcribing Pol II prematurely terminates at the gene end in response to H2O2. Further analysis found that the reduction of Ser2-P is, at least in part, regulated by CK2 but independent of FCP1 and other known Ser2 phosphatases. Finally, the H2O2 treatment also affected snRNA 3' processing although surprisingly the U2 processing was not impaired. Together, our data suggest that H2O2 exposure creates a unique CTD phosphorylation state that rapidly alters transcription to deal with acute oxidative stress, perhaps creating a novel "emergency brake" mechanism to transiently dampen gene expression.


Asunto(s)
Peróxido de Hidrógeno , ARN Polimerasa II , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Fosforilación , ARN Polimerasa II/metabolismo , Transcripción Genética
11.
Genes Dev ; 35(23-24): 1579-1594, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34819354

RESUMEN

The nucleolus is an important cellular compartment in which ribosomal RNAs (rRNAs) are transcribed and where certain stress pathways that are crucial for cell growth are coordinated. Here we report novel functions of the DNA replication and repair factor replication protein A (RPA) in control of nucleolar homeostasis. We show that loss of the DNA:RNA helicase senataxin (SETX) promotes RPA nucleolar localization, and that this relocalization is dependent on the presence of R loops. Notably, this nucleolar RPA phenotype was also observed in the presence of camptothecin (CPT)-induced genotoxic stress, as well as in SETX-deficient AOA2 patient fibroblasts. Extending these results, we found that RPA is recruited to rDNA following CPT treatment, where RPA prevents R-loop-induced DNA double-strand breaks. Furthermore, we show that loss of RPA significantly decreased 47S pre-rRNA levels, which was accompanied by increased expression of both RNAP II-mediated "promoter and pre-rRNA antisense" RNA as well as RNAP I-transcribed intragenic spacer RNAs. Finally, and likely reflecting the above, we found that loss of RPA promoted nucleolar structural disorganization, characterized by the appearance of reduced size nucleoli. Our findings both indicate new roles for RPA in nucleoli through pre-rRNA transcriptional control and also emphasize that RPA function in nucleolar homeostasis is linked to R-loop resolution under both physiological and pathological conditions.


Asunto(s)
Estructuras R-Loop , Proteína de Replicación A , Nucléolo Celular/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Humanos , Enzimas Multifuncionales , ARN Helicasas/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Transcripción Genética
12.
Cell Cycle ; 20(7): 631-646, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33722167

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a deadly neuromuscular disorder caused by progressive motor neuron loss in the brain and spinal cord. Over the past decades, a number of genetic mutations have been identified that cause or are associated with ALS disease progression. Numerous genes harbor ALS mutations, and they encode proteins displaying a wide range of physiological functions, with limited overlap. Despite the divergent functions, mutations in these genes typically trigger protein aggregation, which can confer gain- and/or loss-of-function to a number of essential cellular processes. Nuclear processes such as mRNA splicing and the response to DNA damage are significantly affected in ALS patients. Cytoplasmic organelles such as mitochondria are damaged by ALS mutant proteins. Processes that maintain cellular homeostasis such as autophagy, nonsense-mediated mRNA decay and nucleocytoplasmic transport, are also impaired by ALS mutations. Here, we review the multiple mechanisms by which mutations in major ALS-associated genes, such as TARDBP, C9ORF72 and FUS, lead to impairment of essential cellular processes.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Muerte Celular/fisiología , Proteínas de Unión al ADN/genética , Mutación/fisiología , Proteína FUS de Unión a ARN/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Autofagia/fisiología , Proteína C9orf72/metabolismo , Daño del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Humanos , Proteína FUS de Unión a ARN/metabolismo
13.
Autophagy ; 17(8): 1889-1906, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32686621

RESUMEN

SETX (senataxin) is an RNA/DNA helicase that has been implicated in transcriptional regulation and the DNA damage response through resolution of R-loop structures. Mutations in SETX result in either of two distinct neurodegenerative disorders. SETX dominant mutations result in a juvenile form of amyotrophic lateral sclerosis (ALS) called ALS4, whereas recessive mutations are responsible for ataxia called ataxia with oculomotor apraxia type 2 (AOA2). How mutations in the same protein can lead to different phenotypes is still unclear. To elucidate AOA2 disease mechanisms, we first examined gene expression changes following SETX depletion. We observed the effects on both transcription and RNA processing, but surprisingly observed decreased R-loop accumulation in SETX-depleted cells. Importantly, we discovered a strong connection between SETX and the macroautophagy/autophagy pathway, reflecting a direct effect on transcription of autophagy genes. We show that SETX depletion inhibits the progression of autophagy, leading to an accumulation of ubiquitinated proteins, decreased ability to clear protein aggregates, as well as mitochondrial defects. Analysis of AOA2 patient fibroblasts also revealed a perturbation of the autophagy pathway. Our work has thus identified a novel function for SETX in the regulation of autophagy, whose modulation may have a therapeutic impact for AOA2.Abbreviations: 3'READS: 3' region extraction and deep sequencing; ACTB: actin beta; ALS4: amyotrophic lateral sclerosis type 4; AOA2: ataxia with oculomotor apraxia type 2; APA: alternative polyadenylation; AS: alternative splicing; ATG7: autophagy-related 7; ATP6V0D2: ATPase H+ transporting V0 subunit D2; BAF: bafilomycin A1; BECN1: beclin 1; ChIP: chromatin IP; Chloro: chloroquine; CPT: camptothecin; DDR: DNA damage response; DNMT1: DNA methyltransferase 1; DRIP: DNA/RNA IP; DSBs: double strand breaks; EBs: embryoid bodies; FTD: frontotemporal dementia; GABARAP: GABA type A receptor-associated protein; GO: gene ontology; HR: homologous recombination; HTT: huntingtin; IF: immunofluorescence; IP: immunoprecipitation; iPSCs: induced pluripotent stem cells; KD: knockdown; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MN: motor neuron; MTORC1: mechanistic target of rapamycin kinase complex 1; PASS: PolyA Site Supporting; PFA: paraformaldehyde; RNAPII: RNA polymerase II; SCA: spinocerebellar ataxia; SETX: senataxin; SMA: spinal muscular atrophy; SMN1: survival of motor neuron 1, telomeric; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TSS: transcription start site; TTS: transcription termination site; ULK1: unc-51 like autophagy activating kinase 1; WB: western blot; WIPI2: WD repeat domain, phosphoinositide interacting 2; XRN2: 5'-3' exoribonuclease 2.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Autofagia/fisiología , ADN Helicasas/metabolismo , Enzimas Multifuncionales/metabolismo , ARN Helicasas/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Neuronas Motoras/metabolismo
14.
Genome Res ; 30(12): 1705-1715, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33055097

RESUMEN

The GGGGCC hexanucleotide expansion in C9orf72 (C9) is the most frequent known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), yet a clear understanding of how C9 fits into the broader context of ALS/FTD pathology has remained lacking. The repetitive RNA derived from the C9 repeat is known to sequester hnRNPH, a splicing regulator, into insoluble aggregates, resulting in aberrant alternative splicing. Furthermore, hnRNPH insolubility and altered splicing of a robust set of targets have been observed to correlate in C9 and sporadic ALS/FTD patients alike, suggesting that changes along this axis are a core feature of disease pathogenesis. Here, we characterize previously uncategorized RNA splicing defects involving widespread intron retention affecting almost 2000 transcripts in C9ALS/FTD brains exhibiting a high amount of sequestered, insoluble hnRNPH. These intron retention events appear not to alter overall expression levels of the affected transcripts but rather the protein-coding regions. These retained introns affect transcripts in multiple cellular pathways predicted to be involved in C9 as well as sporadic ALS/FTD etiology, including the proteasomal and autophagy systems. The retained intron pre-mRNAs display a number of characteristics, including enrichment of hnRNPH-bound splicing enhancer motifs and a propensity for G-quadruplex (G-Q) formation, linking the defective splicing directly to high amounts of sequestered hnRNPH. Together, our results reveal previously undetected splicing defects in high insoluble hnRNPH-associated C9ALS brains, suggesting a feedback between effective RNA-binding protein dosage and protein quality control in C9, and perhaps all, ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Demencia Frontotemporal/genética , Redes Reguladoras de Genes , Análisis de Secuencia de ARN/métodos , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/metabolismo , Encéfalo/metabolismo , Proteína C9orf72/metabolismo , Estudios de Casos y Controles , Femenino , Demencia Frontotemporal/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Intrones , Masculino , Persona de Mediana Edad , Proteostasis , Empalme del ARN
15.
Nat Commun ; 11(1): 3182, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576858

RESUMEN

Most eukaryotic genes produce alternative polyadenylation (APA) isoforms. Here we report that, unlike previously characterized cell lineages, differentiation of syncytiotrophoblast (SCT), a cell type critical for hormone production and secretion during pregnancy, elicits widespread transcript shortening through APA in 3'UTRs and in introns. This global APA change is observed in multiple in vitro trophoblast differentiation models, and in single cells from placentas at different stages of pregnancy. Strikingly, the transcript shortening is unrelated to cell proliferation, a feature previously associated with APA control, but instead accompanies increased secretory functions. We show that 3'UTR shortening leads to transcripts with higher mRNA stability, which augments transcriptional activation, especially for genes involved in secretion. Moreover, this mechanism, named secretion-coupled APA (SCAP), is also executed in B cell differentiation to plasma cells. Together, our data indicate that SCAP tailors the transcriptome during formation of secretory cells, boosting their protein production and secretion capacity.


Asunto(s)
Diferenciación Celular/fisiología , Poliadenilación/fisiología , Transporte de Proteínas/fisiología , Transcriptoma , Regiones no Traducidas 3' , Diferenciación Celular/genética , Linaje de la Célula , Proliferación Celular , Células Madre Embrionarias , Regulación del Desarrollo de la Expresión Génica , Humanos , Isoformas de Proteínas , Transporte de Proteínas/genética , Estabilidad del ARN , ARN Mensajero/metabolismo
16.
RNA Biol ; 17(10): 1383-1390, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32449435

RESUMEN

Burkitt lymphoma (BL) is an aggressive B-cell lymphoma characterized by translocation and deregulation of the proto-oncogene c-MYC. Transcription factor 3 (TCF3) has also been shown to be involved in BL pathogenesis. In BL, TCF3 is constitutively active, and/or expression of its transcriptional targets are altered as a result of BL-associated mutations. Here, we found that BL-related TCF3 mutations affect TCF3 alternative splicing, in part by reducing binding of the splicing regulator hnRNPH1 to exon 18b. This leads to greater exon 18b inclusion, thereby generating more of the mutated E47 isoform of TCF3. Interestingly, upregulation of E47 dysregulates the expression of TCF3 targets PTPN6, and perhaps CCND3, which are known to be involved in BL pathogenesis. Our findings thus reveal a mechanism by which TCF3 somatic mutations affect multilayered gene regulation underlying BL pathogenesis.


Asunto(s)
Empalme Alternativo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Mutación , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores de Tumor , Linfoma de Burkitt/patología , Línea Celular Tumoral , Susceptibilidad a Enfermedades , Exones , Humanos , Unión Proteica , Proto-Oncogenes Mas
17.
Genes Dev ; 34(11-12): 785-805, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381627

RESUMEN

Dysregulation of the DNA/RNA-binding protein FUS causes certain subtypes of ALS/FTD by largely unknown mechanisms. Recent evidence has shown that FUS toxic gain of function due either to mutations or to increased expression can disrupt critical cellular processes, including mitochondrial functions. Here, we demonstrate that in human cells overexpressing wild-type FUS or expressing mutant derivatives, the protein associates with multiple mRNAs, and these are enriched in mRNAs encoding mitochondrial respiratory chain components. Notably, this sequestration leads to reduced levels of the encoded proteins, which is sufficient to bring about disorganized mitochondrial networks, reduced aerobic respiration and increased reactive oxygen species. We further show that mutant FUS associates with mitochondria and with mRNAs encoded by the mitochondrial genome. Importantly, similar results were also observed in fibroblasts derived from ALS patients with FUS mutations. Finally, we demonstrate that FUS loss of function does not underlie the observed mitochondrial dysfunction, and also provides a mechanism for the preferential sequestration of the respiratory chain complex mRNAs by FUS that does not involve sequence-specific binding. Together, our data reveal that respiratory chain complex mRNA sequestration underlies the mitochondrial defects characteristic of ALS/FTD and contributes to the FUS toxic gain of function linked to this disease spectrum.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Regulación de la Expresión Génica/genética , Mitocondrias/patología , ARN Mensajero/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Línea Celular , Respiración de la Célula/genética , Células Cultivadas , Transporte de Electrón/genética , Genoma Mitocondrial , Humanos , Mitocondrias/genética , Mutación , Agregación Patológica de Proteínas/genética , Unión Proteica/genética
18.
Proc Natl Acad Sci U S A ; 117(19): 10305-10312, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32332164

RESUMEN

The gene encoding the core spliceosomal protein SF3B1 is the most frequently mutated gene encoding a splicing factor in a variety of hematologic malignancies and solid tumors. SF3B1 mutations induce use of cryptic 3' splice sites (3'ss), and these splicing errors contribute to tumorigenesis. However, it is unclear how widespread this type of cryptic 3'ss usage is in cancers and what is the full spectrum of genetic mutations that cause such missplicing. To address this issue, we performed an unbiased pan-cancer analysis to identify genetic alterations that lead to the same aberrant splicing as observed with SF3B1 mutations. This analysis identified multiple mutations in another spliceosomal gene, SUGP1, that correlated with significant usage of cryptic 3'ss known to be utilized in mutant SF3B1 expressing cells. Remarkably, this is consistent with recent biochemical studies that identified a defective interaction between mutant SF3B1 and SUGP1 as the molecular defect responsible for cryptic 3'ss usage. Experimental validation revealed that five different SUGP1 mutations completely or partially recapitulated the 3'ss defects. Our analysis suggests that SUGP1 mutations in cancers can induce missplicing identical or similar to that observed in mutant SF3B1 cancers.


Asunto(s)
Biología Computacional/métodos , Mutación , Neoplasias/genética , Fosfoproteínas/genética , Sitios de Empalme de ARN , Factores de Empalme de ARN/genética , Empalme del ARN , Análisis Mutacional de ADN , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/patología , Empalmosomas
19.
Mol Cell ; 76(1): 82-95.e7, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31474574

RESUMEN

SF3B1, which encodes an essential spliceosomal protein, is frequently mutated in myelodysplastic syndromes (MDS) and many cancers. However, the defect of mutant SF3B1 is unknown. Here, we analyzed RNA sequencing data from MDS patients and confirmed that SF3B1 mutants use aberrant 3' splice sites. To elucidate the underlying mechanism, we purified complexes containing either wild-type or the hotspot K700E mutant SF3B1 and found that levels of a poorly studied spliceosomal protein, SUGP1, were reduced in mutant spliceosomes. Strikingly, SUGP1 knockdown completely recapitulated the splicing errors, whereas SUGP1 overexpression drove the protein, which our data suggest plays an important role in branchsite recognition, into the mutant spliceosome and partially rescued splicing. Other hotspot SF3B1 mutants showed similar altered splicing and diminished interaction with SUGP1. Our study demonstrates that SUGP1 loss is a common defect of spliceosomes with disease-causing SF3B1 mutations and, because this defect can be rescued, suggests possibilities for therapeutic intervention.


Asunto(s)
Leucemia Eritroblástica Aguda/metabolismo , Mutación , Síndromes Mielodisplásicos/metabolismo , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Empalme del ARN , Empalmosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Células K562 , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/patología , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Fenotipo , Fosfoproteínas/genética , Unión Proteica , Factores de Empalme de ARN/genética , Empalmosomas/genética , Empalmosomas/patología
20.
RNA ; 25(11): 1497-1508, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31391218

RESUMEN

TCF3, also known as E2A, is a well-studied transcription factor that plays an important role in stem cell maintenance and hematopoietic development. The TCF3 gene encodes two related proteins, E12 and E47, which arise from mutually exclusive alternative splicing (MEAS). Since these two proteins have different DNA binding and dimerization domains, this AS event must be strictly regulated to ensure proper isoform ratios. Previously, we found that heterogeneous nuclear ribonucleoprotein (hnRNP) H1/F regulates TCF3 AS by binding to exonic splicing silencers (ESSs) in exon 18b. Here, we identify conserved intronic splicing silencers (ISSs) located between, and far from, the two mutually exclusive exons, and show that they are essential for MEAS. Further, we demonstrate that the hnRNP PTBP1 binds the ISS and is a regulator of TCF3 AS. We also demonstrate that hnRNP H1 and PTBP1 regulate TCF3 AS reciprocally, and that position-dependent interactions between these factors are essential for proper TCF3 MEAS. Our study provides a new model in which MEAS is regulated by cooperative actions of distinct hnRNPs bound to ISSs and ESSs.


Asunto(s)
Empalme Alternativo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/metabolismo , ARN Helicasas DEAD-box/metabolismo , Exones , Células HeLa , Humanos , Intrones , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA