Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Biosci Rep ; 44(6)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38808772

RESUMEN

Liver fibrosis is the excessive accumulation of extracellular matrix proteins that occurs in most types of chronic liver disease. At the cellular level, liver fibrosis is associated with the activation of hepatic stellate cells (HSCs) which transdifferentiate into a myofibroblast-like phenotype that is contractile, proliferative and profibrogenic. HSC transdifferentiation induces genome-wide changes in gene expression that enable the cell to adopt its profibrogenic functions. We have previously identified that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) is highly induced following HSC activation; however, the cellular targets of its deubiquitinating activity are poorly defined. Here, we describe a role for UCHL1 in regulating the levels and activity of hypoxia-inducible factor 1 (HIF1), an oxygen-sensitive transcription factor, during HSC activation and liver fibrosis. HIF1 is elevated during HSC activation and promotes the expression of profibrotic mediator HIF target genes. Increased HIF1α expression correlated with induction of UCHL1 mRNA and protein with HSC activation. Genetic deletion or chemical inhibition of UCHL1 impaired HIF activity through reduction of HIF1α levels. Furthermore, our mechanistic studies have shown that UCHL1 elevates HIF activity through specific cleavage of degradative ubiquitin chains, elevates levels of pro-fibrotic gene expression and increases proliferation rates. As we also show that UCHL1 inhibition blunts fibrogenesis in a pre-clinical 3D human liver slice model of fibrosis, these results demonstrate how small molecule inhibitors of DUBs can exert therapeutic effects through modulation of HIF transcription factors in liver disease. Furthermore, inhibition of HIF activity using UCHL1 inhibitors may represent a therapeutic opportunity with other HIF-related pathologies.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Cirrosis Hepática , Ubiquitina Tiolesterasa , Animales , Humanos , Ratones , Transdiferenciación Celular/genética , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
3.
Am J Pathol ; 193(4): 417-429, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36690076

RESUMEN

miRNAs are 22 nucleotides long and belong to a class of noncoding RNAs that plays an important role in regulating gene expression at a post-transcriptional level. Studies show aberrant levels of miRNAs to be associated with profibrotic processes in idiopathic pulmonary fibrosis (IPF). However, most of these studies used whole IPF tissue or in vitro monocultures in which fibrosis was artificially induced. The current study used laser microdissection to collect fibroblastic foci (FF), the key pathologic lesion in IPF, isolated miRNAs, and compared their expression levels with those found in whole IPF lung tissue and/or in vitro cultured fibroblast from IPF or normal lungs. Sequencing libraries were generated, and data generated were bioinformatically analyzed. A total of 18 miRNAs were significantly overexpressed in FF tissue when compared with whole IPF tissue. Of those, 15 were unique to FF. Comparison of FF with cultured IPF fibroblasts also revealed differences in miRNA composition that impacted several signaling pathways. The miRNA composition of FF is both overlapping and distinct from that of whole IPF tissue or cultured IPF fibroblasts and highlights the importance of characterizing FF biology as a phenotypically and functionally discrete tissue microenvironment.


Asunto(s)
Fibrosis Pulmonar Idiopática , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Pulmón/patología , Fibrosis Pulmonar Idiopática/metabolismo , Fibroblastos/metabolismo
4.
Noncoding RNA ; 8(1)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35202092

RESUMEN

Natural antisense transcripts (NATs) constitute a significant group of regulatory, long noncoding RNAs. They are prominently expressed in testis but are also detectable in other organs. NATs are transcribed at low levels and co-expressed with related protein coding sense transcripts. Nowadays NATs are generally considered as regulatory, long noncoding RNAs without closer focus on the inevitable interference between sense and antisense expression. This work describes a cellular system where sense and antisense transcription of a specific locus (SLC34A1/PFN3) is induced using epigenetic modifiers and CRISPR-Cas9. The renal cell lines HEK293 and HKC-8 do not express SLC34A1/PFN3 under normal culture conditions. Five-day exposure to dexamethasone significantly stimulates sense transcript (SLC34A1) levels and antisense (PFN3) minimally; the effect is only seen in HEK293 cells. Enhanced expression is paralleled by reduced sense promoter methylation and an increase in activating histone marks. Expression is further modulated by cassettes that stimulate the expression of sense or antisense transcript but disrupt protein coding potential. Constitutive expression of a 5'-truncated SLC34A1 transcript increases sense expression independent of dexamethasone induction but also stimulates antisense expression. Concordant expression is confirmed with the antisense knock-in that also enhances sense expression. The antisense effect acts on transcription in cis since transient transfection with sense or antisense constructs fails to stimulate the expression of the opposite transcript. These results suggest that bi-directional transcription of the SLC34A1/PFN3 locus has a stimulatory influence on the expression of the opposite transcript involving epigenetic changes of the promoters. In perspective of extensive, previous research into bi-directionally transcribed SLC34A loci, the findings underpin a hypothesis where NATs display different biological roles in soma and germ cells. Accordingly, we propose that in somatic cells, NATs act like lncRNAs-with the benefit of close proximity to a potential target gene. In germ cells, however, recent evidence suggests different biological roles for NATs that require RNA complementarity and double-stranded RNA formation.

5.
Int J Obes (Lond) ; 46(2): 333-341, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34716428

RESUMEN

BACKGROUND/OBJECTIVES: Obesity increases colorectal cancer (CRC) risk. However, the effects of weight loss on CRC risk are unclear. Epigenetic mechanisms involving microRNAs that lead to dysregulated gene expression may mediate the effects of obesity and weight loss on CRC risk. We examined the effects of obesity and weight loss following Roux-en-Y gastric bypass (RYGB) on microRNA expression in the human rectal mucosa. SUBJECTS/METHODS: We collected rectal mucosal biopsies from obese patients (n = 22) listed for RYGB and age- and sex-matched healthy non-obese Controls (n = 20), at baseline and six months post-surgery. We quantified microRNA expression in rectal mucosal biopsies using Next Generation Sequencing and bioinformatics analysis to investigate the likely functional consequences of these epigenetic changes. RESULTS: Compared with non-obese individuals, obese individuals showed differential expression of 112 microRNAs (p < 0.05). At six-months post-RYGB, when mean body mass had fallen by 27 kg, 60 microRNAs were differentially expressed, compared with baseline (p < 0.05). The expression of 36 microRNAs differed significantly between both i) obese and non-obese individuals and ii) obese individuals pre- and post-RYGB. Quantitative polymerase chain reaction (qPCR) demonstrated that expression of miR-31 and miR-215 was significantly (p < 0.05) higher, 143-fold and 15-fold respectively, in obese than in non-obese individuals. Weight loss, following RYGB, reduced expression of miR-31 and miR-215 to levels comparable with Controls. These differentially expressed microRNAs are implicated in pathways linked with inflammation, obesity and cancer. CONCLUSION: Our findings show, for the first time, that obesity is associated with dysregulated microRNA expression in the human rectal mucosa. Further, surgically-induced weight loss may normalise microRNA expression in this tissue.


Asunto(s)
Derivación Gástrica/efectos adversos , MicroARNs/análisis , Membrana Mucosa/metabolismo , Obesidad/metabolismo , Adulto , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/metabolismo , Inglaterra/epidemiología , Femenino , Derivación Gástrica/métodos , Derivación Gástrica/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Membrana Mucosa/fisiopatología , Obesidad/epidemiología , Obesidad/fisiopatología , Recto/metabolismo , Recto/fisiopatología , Estadísticas no Paramétricas
6.
Hepatology ; 74(6): 3441-3459, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34233024

RESUMEN

BACKGROUND AND AIMS: NAFLD is the most common hepatic pathology in western countries and no treatment is currently available. NAFLD is characterized by the aberrant hepatocellular accumulation of fatty acids in the form of lipid droplets (LDs). Recently, it was shown that liver LD degradation occurs through a process termed lipophagy, a form of autophagy. However, the molecular mechanisms governing liver lipophagy are elusive. Here, we aimed to ascertain the key molecular players that regulate hepatic lipophagy and their importance in NAFLD. APPROACH AND RESULTS: We analyzed the formation and degradation of LD in vitro (fibroblasts and primary mouse hepatocytes), in vivo and ex vivo (mouse and human liver slices) and focused on the role of the autophagy master regulator mammalian target of rapamycin complex (mTORC) 1 and the LD coating protein perilipin (Plin) 3 in these processes. We show that the autophagy machinery is recruited to the LD on hepatic overload of oleic acid in all experimental settings. This led to activation of lipophagy, a process that was abolished by Plin3 knockdown using RNA interference. Furthermore, Plin3 directly interacted with the autophagy proteins focal adhesion interaction protein 200 KDa and autophagy-related 16L, suggesting that Plin3 functions as a docking protein or is involved in autophagosome formation to activate lipophagy. Finally, we show that mTORC1 phosphorylated Plin3 to promote LD degradation. CONCLUSIONS: These results reveal that mTORC1 regulates liver lipophagy through a mechanism dependent on Plin3 phosphorylation. We propose that stimulating this pathway can enhance lipophagy in hepatocytes to help protect the liver from lipid-mediated toxicity, thus offering a therapeutic strategy in NAFLD.


Asunto(s)
Autofagia , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Perilipina-3/metabolismo , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
7.
BMC Med ; 19(1): 39, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33593348

RESUMEN

BACKGROUND: Serum transferrin levels represent an independent predictor of mortality in patients with liver failure. Hepatocyte nuclear factor 4 alpha (HNF4α) is a master regulator of hepatocyte functions. The aim of this study was to explore whether serum transferrin reflects HNF4α activity. METHODS: Factors regulating transferrin expression in alcoholic hepatitis (AH) were assessed via transcriptomic/methylomic analysis as well as chromatin immunoprecipitation coupled to DNA sequencing. The findings were corroborated in primary hepatocytes. Serum and liver samples from 40 patients with advanced liver disease of multiple etiologies were also studied. RESULTS: In patients with advanced liver disease, serum transferrin levels correlated with hepatic transferrin expression (r = 0.51, p = 0.01). Immunohistochemical and biochemical tests confirmed reduced HNF4α and transferrin protein levels in individuals with cirrhosis. In AH, hepatic gene-gene correlation analysis in liver transcriptome revealed an enrichment of HNF4α signature in transferrin-correlated transcriptome while transforming growth factor beta 1 (TGFß1), tumor necrosis factor α (TNFα), interleukin 1 beta (IL-1ß), and interleukin 6 (IL-6) negatively associated with transferrin signature. A key regulatory region in transferrin promoter was hypermethylated in patients with AH. In primary hepatocytes, treatment with TGFß1 or the HNF4α inhibitor BI6015 suppressed transferrin production, while exposure to TNFα, IL-1ß, and IL-6 had no effect. The correlation between hepatic HNF4A and transferrin mRNA levels was also seen in advanced liver disease. CONCLUSIONS: Serum transferrin levels constitute a prognostic and mechanistic biomarker. Consequently, they may serve as a surrogate of impaired hepatic HNF4α signaling and liver failure.


Asunto(s)
Factores Nucleares del Hepatocito/metabolismo , Hepatocitos/metabolismo , Hepatopatías/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Anciano , Metilación de ADN , Femenino , Perfilación de la Expresión Génica , Hepatocitos/patología , Humanos , Cirrosis Hepática/metabolismo , Hepatopatías/patología , Neoplasias Hepáticas/metabolismo , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo
8.
Gastroenterology ; 160(5): 1725-1740.e2, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33309778

RESUMEN

BACKGROUND & AIMS: We recently showed that alcoholic hepatitis (AH) is characterized by dedifferentiation of hepatocytes and loss of mature functions. Glucose metabolism is tightly regulated in healthy hepatocytes. We hypothesize that AH may lead to metabolic reprogramming of the liver, including dysregulation of glucose metabolism. METHODS: We performed integrated metabolomic and transcriptomic analyses of liver tissue from patients with AH or alcoholic cirrhosis or normal liver tissue from hepatic resection. Focused analyses of chromatin immunoprecipitation coupled to DNA sequencing was performed. Functional in vitro studies were performed in primary rat and human hepatocytes and HepG2 cells. RESULTS: Patients with AH exhibited specific changes in the levels of intermediates of glycolysis/gluconeogenesis, the tricarboxylic acid cycle, and monosaccharide and disaccharide metabolism. Integrated analysis of the transcriptome and metabolome showed the used of alternate energetic pathways, metabolite sinks and bottlenecks, and dysregulated glucose storage in patients with AH. Among genes involved in glucose metabolism, hexokinase domain containing 1 (HKDC1) was identified as the most up-regulated kinase in patients with AH. Histone active promoter and enhancer markers were increased in the HKDC1 genomic region. High HKDC1 levels were associated with the development of acute kidney injury and decreased survival. Increased HKDC1 activity contributed to the accumulation of glucose-6-P and glycogen in primary rat hepatocytes. CONCLUSIONS: Altered metabolite levels and messenger RNA expression of metabolic enzymes suggest the existence of extensive reprogramming of glucose metabolism in AH. Increased HKDC1 expression may contribute to dysregulated glucose metabolism and represents a novel biomarker and therapeutic target for AH.


Asunto(s)
Desdiferenciación Celular , Metabolismo Energético , Perfilación de la Expresión Génica , Glucosa/metabolismo , Hepatitis Alcohólica/enzimología , Hepatocitos/enzimología , Hexoquinasa/metabolismo , Hígado/enzimología , Metabolómica , Lesión Renal Aguda/enzimología , Lesión Renal Aguda/genética , Adaptación Fisiológica , Animales , Europa (Continente) , Femenino , Regulación Enzimológica de la Expresión Génica , Glucosa-6-Fosfato/metabolismo , Glucógeno/metabolismo , Células Hep G2 , Hepatitis Alcohólica/genética , Hepatitis Alcohólica/patología , Hepatocitos/patología , Hexoquinasa/genética , Humanos , Hígado/patología , Masculino , Metaboloma , Persona de Mediana Edad , Ratas Wistar , Transcriptoma , Estados Unidos
9.
Gut ; 70(2): 388-400, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32327527

RESUMEN

OBJECTIVE: Hepatic stellate cells (HSC) transdifferentiation into myofibroblasts is central to fibrogenesis. Epigenetic mechanisms, including histone and DNA methylation, play a key role in this process. Concerted action between histone and DNA-mehyltransferases like G9a and DNMT1 is a common theme in gene expression regulation. We aimed to study the efficacy of CM272, a first-in-class dual and reversible G9a/DNMT1 inhibitor, in halting fibrogenesis. DESIGN: G9a and DNMT1 were analysed in cirrhotic human livers, mouse models of liver fibrosis and cultured mouse HSC. G9a and DNMT1 expression was knocked down or inhibited with CM272 in human HSC (hHSC), and transcriptomic responses to transforming growth factor-ß1 (TGFß1) were examined. Glycolytic metabolism and mitochondrial function were analysed with Seahorse-XF technology. Gene expression regulation was analysed by chromatin immunoprecipitation and methylation-specific PCR. Antifibrogenic activity and safety of CM272 were studied in mouse chronic CCl4 administration and bile duct ligation (BDL), and in human precision-cut liver slices (PCLSs) in a new bioreactor technology. RESULTS: G9a and DNMT1 were detected in stromal cells in areas of active fibrosis in human and mouse livers. G9a and DNMT1 expression was induced during mouse HSC activation, and TGFß1 triggered their chromatin recruitment in hHSC. G9a/DNMT1 knockdown and CM272 inhibited TGFß1 fibrogenic responses in hHSC. TGFß1-mediated profibrogenic metabolic reprogramming was abrogated by CM272, which restored gluconeogenic gene expression and mitochondrial function through on-target epigenetic effects. CM272 inhibited fibrogenesis in mice and PCLSs without toxicity. CONCLUSIONS: Dual G9a/DNMT1 inhibition by compounds like CM272 may be a novel therapeutic strategy for treating liver fibrosis.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Células Estrelladas Hepáticas/metabolismo , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Cirrosis Hepática/etiología , Animales , Inmunoprecipitación de Cromatina , ADN (Citosina-5-)-Metiltransferasa 1/genética , Epigénesis Genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Antígenos de Histocompatibilidad/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Factor de Crecimiento Transformador beta1/metabolismo
11.
Sci Rep ; 10(1): 21708, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303921

RESUMEN

MicroRNAs are small (~ 22nt long) noncoding RNAs (ncRNAs) that regulate gene expression at the post-transcriptional level. Over 2000 microRNAs have been described in humans and many are implicated in human pathologies including tissue fibrosis. Hepatic stellate cells (HSC) are the major cellular contributors to excess extracellular matrix deposition in the diseased liver and as such are important in the progression of liver fibrosis. We employed next generation sequencing to map alterations in the expression of microRNAs occurring across a detailed time course of culture-induced transdifferentiation of primary human HSC, this a key event in fibrogenesis. Furthermore, we compared profiling of human HSC microRNAs with that of rat HSC so as to identify those molecules that are conserved with respect to modulation of expression. Our analysis reveals that a total of 229 human microRNAs display altered expression as a consequence of HSC transdifferentiation and of these 104 were modulated early during the initiation phase. Typically modulated microRNAs were targeting kinases, transcription factors, chromatin factors, cell cycle regulators and growth factors. 162 microRNAs changed in expression during transdifferentiation of rat HSC, however only 17 underwent changes that were conserved in human HSC. Our study therefore identifies widespread changes in the expression of HSC microRNAs in fibrogenesis, but suggests a need for caution when translating data obtained from rodent HSC to events occurring in human cells.


Asunto(s)
Secuencia de Bases , Transdiferenciación Celular/genética , Células Estrelladas Hepáticas/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Análisis de Secuencia de ARN/métodos , Animales , Células Cultivadas , Fibrosis/genética , Expresión Génica , Células Estrelladas Hepáticas/patología , Humanos , Masculino , Fenotipo , Ratas Sprague-Dawley
12.
Nat Metab ; 2(11): 1350-1367, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33168981

RESUMEN

Fibrosis is a common pathological feature of chronic disease. Deletion of the NF-κB subunit c-Rel limits fibrosis in multiple organs, although the mechanistic nature of this protection is unresolved. Using cell-specific gene-targeting manipulations in mice undergoing liver damage, we elucidate a critical role for c-Rel in controlling metabolic changes required for inflammatory and fibrogenic activities of hepatocytes and macrophages and identify Pfkfb3 as the key downstream metabolic mediator of this response. Independent deletions of Rel in hepatocytes or macrophages suppressed liver fibrosis induced by carbon tetrachloride, while combined deletion had an additive anti-fibrogenic effect. In transforming growth factor-ß1-induced hepatocytes, c-Rel regulates expression of a pro-fibrogenic secretome comprising inflammatory molecules and connective tissue growth factor, the latter promoting collagen secretion from HMs. Macrophages lacking c-Rel fail to polarize to M1 or M2 states, explaining reduced fibrosis in RelΔLysM mice. Pharmacological inhibition of c-Rel attenuated multi-organ fibrosis in both murine and human fibrosis. In conclusion, activation of c-Rel/Pfkfb3 in damaged tissue instigates a paracrine signalling network among epithelial, myeloid and mesenchymal cells to stimulate fibrogenesis. Targeting the c-Rel-Pfkfb3 axis has potential for therapeutic applications in fibrotic disease.


Asunto(s)
Epitelio/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Macrófagos/patología , Proteínas Proto-Oncogénicas c-rel/genética , Animales , Polaridad Celular/genética , Marcación de Gen , Hepatocitos/patología , Hidroxiprolina/metabolismo , Cirrosis Hepática/prevención & control , Regeneración Hepática/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitosis/genética , Comunicación Paracrina/genética , Fosfofructoquinasa-2/genética , Proteínas Proto-Oncogénicas c-rel/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-rel/metabolismo
13.
Pancreas ; 49(10): 1364-1371, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33122526

RESUMEN

OBJECTIVES: Pancreatic stellate cells (PSCs) play a key metabolic role within the tumor microenvironment (stroma) of pancreatic ductal adenocarcinoma (PDAC), being glycolytic and associated with protumorigenic acidification from excess lactate. This study investigates the clinical significance of glycolytic enzyme lactate dehydrogenase (LDH) and determines efficacy of the novel pan-LDH inhibitor Galloflavin. METHODS: An in vitro Transwell system was adopted for coculture of PSCs and 3 PDAC cell lines (MIA PaCa-2, PANC-1, and BxPC-3). Cells were treated with Galloflavin, and outcomes were analyzed regarding proliferation, apoptosis, lactate production, and glycolytic enzyme protein expression. Immunohistochemical staining for lactate dehydrogenase B (LDHB) was performed on 59 resected PDAC tumors annotated for clinical outcome. RESULTS: Galloflavin reduced PDAC proliferation in monoculture (P < 0.01); however, in co-culture with PSCs, an antiproliferative effect was only evident in PANC-1 (P = 0.001). An apoptotic effect was observed in MIA PaCa-2 and BxPC-3 in coculture (P < 0.05). A reduction in media lactate was observed in coculture (P < 0.01) with PSCs. Immunohistochemistry revealed stromal and tumoral LDHB expression had no impact on survival. CONCLUSIONS: Galloflavin has the potential to neutralize the acidic PDAC microenvironment and thereby reduce tumor invasiveness and metastasis. Patients with lower LDHB expression are more likely to be beneficial responders.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Glucólisis/efectos de los fármacos , Isocumarinas/farmacología , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Células Estrelladas Pancreáticas/efectos de los fármacos , Microambiente Tumoral , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/enzimología , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Humanos , L-Lactato Deshidrogenasa/metabolismo , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología , Células Estrelladas Pancreáticas/enzimología , Células Estrelladas Pancreáticas/patología
14.
Rheumatology (Oxford) ; 59(12): 3939-3951, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32725139

RESUMEN

OBJECTIVES: NF-κB regulates genes that control inflammation, cell proliferation, differentiation and survival. Dysregulated NF-κB signalling alters normal skin physiology and deletion of cRel limits bleomycin-induced skin fibrosis. This study investigates the role of cRel in modulating fibroblast phenotype in the context of SSc. METHODS: Fibrosis was assessed histologically in mice challenged with bleomycin to induce lung or skin fibrosis. RNA sequencing and pathway analysis was performed on wild type and Rel-/- murine lung and dermal fibroblasts. Functional assays examined fibroblast proliferation, migration and matrix production. cRel overexpression was investigated in human dermal fibroblasts. cRel immunostaining was performed on lung and skin tissue sections from SSc patients and non-fibrotic controls. RESULTS: cRel expression was elevated in murine lung and skin fibrosis models. Rel-/- mice were protected from developing pulmonary fibrosis. Soluble collagen production was significantly decreased in fibroblasts lacking cRel while proliferation and migration of these cells was significantly increased. cRel regulates genes involved in extracellular structure and matrix organization. Positive cRel staining was observed in fibroblasts in human SSc skin and lung tissue. Overexpression of constitutively active cRel in human dermal fibroblasts increased expression of matrix genes. An NF-κB gene signature was identified in diffuse SSc skin and nuclear cRel expression was elevated in SSc skin fibroblasts. CONCLUSION: cRel regulates a pro-fibrogenic transcriptional programme in fibroblasts that may contribute to disease pathology. Targeting cRel signalling in fibroblasts of SSc patients could provide a novel therapeutic avenue to limit scar formation in this disease.


Asunto(s)
Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas c-rel/metabolismo , Esclerodermia Sistémica/metabolismo , Animales , Matriz Extracelular/metabolismo , Fibrosis , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Humanos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerodermia Sistémica/patología
15.
Hepatology ; 71(3): 874-892, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31378982

RESUMEN

BACKGROUND AND AIMS: In nonalcoholic fatty liver disease (NAFLD), fibrosis is the most important factor contributing to NAFLD-associated morbidity and mortality. Prevention of progression and reduction in fibrosis are the main aims of treatment. Even in early stages of NAFLD, hepatic and systemic hyperammonemia is evident. This is due to reduced urea synthesis; and as ammonia is known to activate hepatic stellate cells, we hypothesized that ammonia may be involved in the progression of fibrosis in NAFLD. APPROACH AND RESULTS: In a high-fat, high-cholesterol diet-induced rodent model of NAFLD, we observed a progressive stepwise reduction in the expression and activity of urea cycle enzymes resulting in hyperammonemia, evidence of hepatic stellate cell activation, and progressive fibrosis. In primary, cultured hepatocytes and precision-cut liver slices we demonstrated increased gene expression of profibrogenic markers after lipid and/or ammonia exposure. Lowering of ammonia with the ammonia scavenger ornithine phenylacetate prevented hepatocyte cell death and significantly reduced the development of fibrosis both in vitro in the liver slices and in vivo in a rodent model. The prevention of fibrosis in the rodent model was associated with restoration of urea cycle enzyme activity and function, reduced hepatic ammonia, and markers of inflammation. CONCLUSIONS: The results of this study suggest that hepatic steatosis results in hyperammonemia, which is associated with progression of hepatic fibrosis. Reduction of ammonia levels prevented progression of fibrosis, providing a potential treatment for NAFLD.


Asunto(s)
Amoníaco/metabolismo , Cirrosis Hepática/prevención & control , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratas , Ratas Sprague-Dawley , Trastornos Innatos del Ciclo de la Urea/etiología
16.
Nat Commun ; 10(1): 3126, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311938

RESUMEN

Alcoholic hepatitis (AH) is a life-threatening condition characterized by profound hepatocellular dysfunction for which targeted treatments are urgently needed. Identification of molecular drivers is hampered by the lack of suitable animal models. By performing RNA sequencing in livers from patients with different phenotypes of alcohol-related liver disease (ALD), we show that development of AH is characterized by defective activity of liver-enriched transcription factors (LETFs). TGFß1 is a key upstream transcriptome regulator in AH and induces the use of HNF4α P2 promoter in hepatocytes, which results in defective metabolic and synthetic functions. Gene polymorphisms in LETFs including HNF4α are not associated with the development of AH. In contrast, epigenetic studies show that AH livers have profound changes in DNA methylation state and chromatin remodeling, affecting HNF4α-dependent gene expression. We conclude that targeting TGFß1 and epigenetic drivers that modulate HNF4α-dependent gene expression could be beneficial to improve hepatocellular function in patients with AH.


Asunto(s)
Hepatitis Alcohólica/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/patología , Hígado/patología , Factor de Crecimiento Transformador beta1/metabolismo , Adulto , Anciano , Animales , Biopsia , Ensamble y Desensamble de Cromatina , Metilación de ADN , Progresión de la Enfermedad , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hepatitis Alcohólica/patología , Factor Nuclear 4 del Hepatocito/genética , Humanos , Hígado/citología , Masculino , Persona de Mediana Edad , Polimorfismo Genético , Análisis de Secuencia de ARN , Factor de Crecimiento Transformador beta1/genética
17.
Gastroenterology ; 157(5): 1398-1412.e9, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31352003

RESUMEN

BACKGROUND & AIMS: Methyl-CpG binding protein 2, MECP2, which binds to methylated regions of DNA to regulate transcription, is expressed by hepatic stellate cells (HSCs) and is required for development of liver fibrosis in mice. We investigated the effects of MECP2 deletion from HSCs on their transcriptome and of phosphorylation of MECP2 on HSC phenotype and liver fibrosis. METHODS: We isolated HSCs from Mecp2-/y mice and wild-type (control) mice. HSCs were activated in culture and used in array analyses of messenger RNAs and long noncoding RNAs. Kyoto Encyclopedia of Genes and Genomes pathway analyses identified pathways regulated by MECP2. We studied mice that expressed a mutated form of Mecp2 that encodes the S80A substitution, MECP2S80, causing loss of MECP2 phosphorylation at serine 80. Liver fibrosis was induced in these mice by administration of carbon tetrachloride, and liver tissues and HSCs were collected and analyzed. RESULTS: MECP2 deletion altered expression of 284 messenger RNAs and 244 long noncoding RNAs, including those that regulate DNA replication; are members of the minichromosome maintenance protein complex family; or encode CDC7, HAS2, DNA2 (a DNA helicase), or RPA2 (a protein that binds single-stranded DNA). We found that MECP2 regulates the DNA repair Fanconi anemia pathway in HSCs. Phosphorylation of MECP2S80 and its putative kinase, HAS2, were induced during transdifferentiation of HSCs. HSCs from MECP2S80 mice had reduced proliferation, and livers from these mice had reduced fibrosis after carbon tetrachloride administration. CONCLUSIONS: In studies of mice with disruption of Mecp2 or that expressed a form of MECP2 that is not phosphorylated at S80, we found phosphorylation of MECP2 to be required for HSC proliferation and induction of fibrosis. In HSCs, MECP2 regulates expression of genes required for DNA replication and repair. Strategies to inhibit MECP2 phosphorylation at S80 might be developed for treatment of liver fibrosis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática Experimental/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Acetaminofén , Animales , Tetracloruro de Carbono , Proliferación Celular , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Colágeno/metabolismo , Reparación del ADN , Replicación del ADN , Células Estrelladas Hepáticas/patología , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/patología , Masculino , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Serina , Transducción de Señal
18.
Sci Rep ; 9(1): 7318, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31086257

RESUMEN

Chronic pancreatitis (CP) is a fibrotic disorder of the pancreas leading to clinical sequelae like pain and an excess of comorbidity including cardiovascular disease and cancers. The aim of this study was to determine the relationship between systemic inflammation and quality of life in patients with CP. Patients were prospectively recruited and underwent a quality of life assessment (EORTC QLQ-C30 and PAN 28). The serum inflammatory profile was assessed using an MSD 30-plex array. The relationship between clinical variables, inflammatory cytokines and quality of life was determined by a GLM-MANOVA and the individual impact of significant variables evaluated by a second ANOVA. In total, 211 patients with a median age of 53 years were recruited across 5 European centres. Gender, age, nicotine and alcohol abuse were clinical variables associated with altered quality of life. Systemic inflammation with high levels of pro-inflammatory cytokines (Eotaxin, IL-1ß, IL-7, IL-8, IL-12/IL-23p40, IL-12p70, IL-13, IL-16, IP-10, MCP-1, MCP-4, MDC, MIP-1a, TARC, TNFß) was associated with diminished quality of life in general and specific domains including pain, physical and cognitive functioning. As conclusion, CP is associated with a systemic inflammatory response that has a negative impact on quality of life and accelerates aging.


Asunto(s)
Cognición/fisiología , Dolor/inmunología , Pancreatitis Crónica/complicaciones , Calidad de Vida , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Envejecimiento/inmunología , Envejecimiento/psicología , Citocinas/sangre , Femenino , Humanos , Mediadores de Inflamación/sangre , Masculino , Persona de Mediana Edad , Dolor/sangre , Dolor/psicología , Pancreatitis Crónica/sangre , Pancreatitis Crónica/inmunología , Pancreatitis Crónica/psicología , Estudios Prospectivos , Factores Sexuales , Encuestas y Cuestionarios/estadística & datos numéricos , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Síndrome de Respuesta Inflamatoria Sistémica/psicología , Adulto Joven
19.
Hepatology ; 70(4): 1377-1391, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30963615

RESUMEN

Precision cut liver slices (PCLSs) retain the structure and cellular composition of the native liver and represent an improved system to study liver fibrosis compared to two-dimensional mono- or co-cultures. The aim of this study was to develop a bioreactor system to increase the healthy life span of PCLSs and model fibrogenesis. PCLSs were generated from normal rat or human liver, or fibrotic rat liver, and cultured in our bioreactor. PCLS function was quantified by albumin enzyme-linked immunosorbent assay (ELISA). Fibrosis was induced in PCLSs by transforming growth factor beta 1 (TGFß1) and platelet-derived growth factor (PDGFßß) stimulation ± therapy. Fibrosis was assessed by gene expression, picrosirius red, and α-smooth muscle actin staining, hydroxyproline assay, and soluble ELISAs. Bioreactor-cultured PCLSs are viable, maintaining tissue structure, metabolic activity, and stable albumin secretion for up to 6 days under normoxic culture conditions. Conversely, standard static transwell-cultured PCLSs rapidly deteriorate, and albumin secretion is significantly impaired by 48 hours. TGFß1/PDGFßß stimulation of rat or human PCLSs induced fibrogenic gene expression, release of extracellular matrix proteins, activation of hepatic myofibroblasts, and histological fibrosis. Fibrogenesis slowly progresses over 6 days in cultured fibrotic rat PCLSs without exogenous challenge. Activin receptor-like kinase 5 (Alk5) inhibitor (Alk5i), nintedanib, and obeticholic acid therapy limited fibrogenesis in TGFß1/PDGFßß-stimulated PCLSs, and Alk5i blunted progression of fibrosis in fibrotic PCLS. Conclusion: We describe a bioreactor technology that maintains functional PCLS cultures for 6 days. Bioreactor-cultured PCLSs can be successfully used to model fibrogenesis and demonstrate efficacy of antifibrotic therapies.


Asunto(s)
Reactores Biológicos , Regulación de la Expresión Génica , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Técnicas de Cultivo de Tejidos/métodos , Animales , Biopsia con Aguja , Técnicas de Cocultivo/métodos , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Sensibilidad y Especificidad , Factores de Tiempo
20.
EMBO J ; 38(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30737259

RESUMEN

Ageing is the biggest risk factor for cardiovascular disease. Cellular senescence, a process driven in part by telomere shortening, has been implicated in age-related tissue dysfunction. Here, we address the question of how senescence is induced in rarely dividing/post-mitotic cardiomyocytes and investigate whether clearance of senescent cells attenuates age-related cardiac dysfunction. During ageing, human and murine cardiomyocytes acquire a senescent-like phenotype characterised by persistent DNA damage at telomere regions that can be driven by mitochondrial dysfunction and crucially can occur independently of cell division and telomere length. Length-independent telomere damage in cardiomyocytes activates the classical senescence-inducing pathways, p21CIP and p16INK4a, and results in a non-canonical senescence-associated secretory phenotype, which is pro-fibrotic and pro-hypertrophic. Pharmacological or genetic clearance of senescent cells in mice alleviates detrimental features of cardiac ageing, including myocardial hypertrophy and fibrosis. Our data describe a mechanism by which senescence can occur and contribute to age-related myocardial dysfunction and in the wider setting to ageing in post-mitotic tissues.


Asunto(s)
Cardiomegalia/patología , Senescencia Celular , Daño del ADN , Fibrosis/patología , Mitosis , Miocitos Cardíacos/patología , Acortamiento del Telómero , Envejecimiento , Animales , Cardiomegalia/etiología , Femenino , Fibrosis/etiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Monoaminooxidasa/fisiología , Miocitos Cardíacos/metabolismo , Fenotipo , ARN/fisiología , Ratas Sprague-Dawley , Telomerasa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA