RESUMEN
The quantification of actinides in aqueous solutions involves complex and expensive separation processes. Electrochemical methods have been widely used for the quick and accurate identification and quantification of organic and inorganic compounds directly or indirectly. Therefore, this work proposes the use of modified graphite with phthalocyanine for electrochemical detection and quantification of Th, U, Pu, Am, and Cm, in aqueous media by cyclic voltammetry. The electrodes were characterized by Raman and infrared spectroscopy, and the cyclic voltammetry data were modeled with Aoki's model. The detection limits (DL) and the quantification limits (QL) reached by the electrochemical detection of these actinides were of the order of ppt. Aoki's model fitted perfectly with the experimental data. The functionalization of graphite electrodes promotes the formation of phthalic anhydride, and the phthalocyanine is anchored on the epoxy groups of the graphite. The electrochemical detection process of these actinides is indirect. This electrochemical detector is cheap and disposable and can be an alternative for an initial characterization of actinides in liquid waste.
Asunto(s)
Elementos de Series Actinoides , Grafito , Técnicas Electroquímicas , Electrodos , Indoles , Isoindoles , Límite de DetecciónRESUMEN
In order to obtain gold electrode surfaces modified with Human Papillomavirus L1 protein (HPV L1)-derived peptides, two sequences, SPINNTKPHEAR and YIK, were chosen. Both have been recognized by means of sera from patients infected with HPV. The molecules, Fc-Ahx-SPINNTKPHEAR, Ac-C-Ahx-(Fc)KSPINNTKPHEAR, Ac-C-Ahx-SPINNTKPHEAR(Fc)K, C-Ahx-SPINNTKPHEAR, and (YIK)2-Ahx-C, were designed, synthesized, and characterized. Our results suggest that peptides derived from the SPINNTKPHEAR sequence, containing ferrocene and cysteine residues, are not stable and not adequate for electrode surface modification. The surface of polycrystalline gold electrodes was modified with the peptides C-Ahx-SPINNTKPHEAR or (YIK)2-Ahx-C through self-assembly. The modified polycrystalline gold electrodes were characterized via infrared spectroscopy and electrochemical measurements. The thermodynamic parameters, surface coverage factor, and medium pH effect were determined for these surfaces. The results indicate that surface modification depends on the peptide sequence (length, amino acid composition, polyvalence, etc.). The influence of antipeptide antibodies on the voltammetric response of the modified electrode was evaluated by comparing results obtained with pre-immune and post-immune serum samples.
Asunto(s)
Proteínas de la Cápside/química , Diseño de Fármacos , Electrodos , Oro , Proteínas Oncogénicas Virales/química , Péptidos/química , Secuencia de Aminoácidos , Animales , Oro/química , Estructura Molecular , Péptidos/síntesis química , Estabilidad Proteica , Conejos , Espectroscopía Infrarroja por Transformada de Fourier , TermodinámicaRESUMEN
The combined effect of temperature and pretreatment of the substrate on the anaerobic treatment of the organic fraction of slaughterhouse solid waste was studied. The goal of the study was to evaluate the effect of pretreating the waste on the efficiency of anaerobic digestion. The effect was analyzed at two temperature ranges (the psychrophilic and the mesophilic ranges), in order to evaluate the effect of temperature on the performance of the anaerobic digestion process for this residue. The experiments were performed in 6 L batch reactors for 30 days. Two temperature ranges were studied: the psychrophilic range (at room temperature, 18°C average) and the mesophilic range (at 37°C). The waste was pretreated with NaOH before the anaerobic treatment. The result of pretreating with NaOH was a 194% increase in the soluble chemical oxygen demand (COD) with a dose of 0.6 g NaOH per g of volatile suspended solids (VSS). In addition, the soluble chemical oxygen demand/total chemical oxygen demand ratio (sCOD/tCOD) increased from 0.31 to 0.7. For the anaerobic treatment, better results were observed in the mesophilic range, achieving 70.7%, 47% and 47.2% removal efficiencies for tCOD, total solids (TS), and volatile solids (VS), respectively.
Asunto(s)
Mataderos , Eliminación de Residuos/métodos , Hidróxido de Sodio/química , Residuos Sólidos/análisis , Anaerobiosis , Biocombustibles/análisis , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , TemperaturaRESUMEN
An electro-Fenton-based method was used to promote the regeneration of granular activated carbon (GAC) previously adsorbed with toluene. Electrochemical regeneration experiments were carried out using a standard laboratory electrochemical cell with carbon paste electrodes and a batch electrochemical reactor. For each system, a comparison was made using FeSO4 as a precursor salt in solution (homogeneous system) and an Fe-loaded ion-exchange resin (Purolite C-100, heterogeneous system), both in combination with electrogenerated H2O2 at the GAC cathode. In the two cases, high regeneration efficiencies were obtained in the presence of iron using appropriate conditions of applied potential and adsorption-polarization time. Consecutive loading and regeneration cycles of GAC were performed in the reactor without great loss of the adsorption properties, only reducing the regeneration efficiency by 1% per cycle during 10 cycles of treatment. Considering that, in the proposed resin-containing process, the use of Fe salts is avoided and that GAC cathodic polarization results in efficient cleaning and regeneration of the adsorbent material, this novel electro-Fenton approach could constitute an excellent alternative for regenerating activated carbon when compared to conventional methods.
Asunto(s)
Carbono/química , Técnicas Electroquímicas , ElectrodosRESUMEN
The radical anions and radical cations of the two tautomers (1e and 1i) of 5,10,15,20-tetraphenyl N-confused free-base porphyrin have been studied using a combination of cyclic voltammetry, steady state absorption spectroscopy, and computational chemistry. N-Confused porphyrins (NCPs), alternatively called 2-aza-21-carba-5,10,15,20-tetraphenylporphyrins or inverted porphyrins, are of great interest for their potential as building blocks in assemblies designed for artificial photosynthesis, and understanding the absorption spectra of the corresponding radical ions is paramount to future studies in multicomponent arrays where electron-transfer reactions are involved. NCP 1e was shown to oxidize at a potential of E(ox) 0.65 V vs Fc(+)|Fc in DMF and reduce at E(red) -1.42 V, while the corresponding values for 1i in toluene were E(ox) 0.60 V and E(red) -1.64 V. The geometries of these radical ions were computed at the B3LYP/6-31+G(d)//B3LYP/6-31G(d) level in the gas phase and in solution using the polarizable continuum model (PCM). From these structures and that of H(2)TPP and its corresponding radical ions, the computed redox potentials for 1e and 1i were calculated using the Born-Haber cycle. While the computed reduction potentials and electron affinities were in excellent agreement with the experimental reduction potentials, the calculated oxidation potentials displayed a somewhat less ideal relationship with experiment. The absorption spectra of the four radical ions were also measured experimentally, with radical cations 1e(â¢+) and 1i(â¢+) displaying significant changes in the Soret and Q-band regions as well as new low energy absorption bands in the near-IR region. The changes in the absorption spectra of radical anions 1e(â¢-) and 1i(â¢-) were not as dramatic, with the changes occurring only in the Soret and Q-band regions. These results were favorably modeled using time-dependent density functional calculations at the TD-B3LYP/6-31+G(d)//B3LYP/6-31G(d) level. These results were also compared to the existing data of free base tetraphenylporphyrin and free base tetraphenylchlorin.