Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Geroscience ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987495

RESUMEN

Various approaches exist to quantify the aging process and estimate biological age on an individual level. Frailty indices based on an age-related accumulation of physical deficits have been developed for human use and translated into mouse models. However, declines observed in aging are not limited to physical functioning but also involve social capabilities. The concept of "social frailty" has been recently introduced into human literature, but no index of social frailty exists for laboratory mice yet. To fill this gap, we developed a mouse Social Frailty Index (mSFI) consisting of seven distinct assays designed to quantify social functioning which is relatively simple to execute and is minimally invasive. Application of the mSFI in group-housed male C57BL/6 mice demonstrated a progressively elevated levels of social frailty through the lifespan. Conversely, group-housed females C57BL/6 mice manifested social frailty only at a very old age. Female mice also showed significantly lower mSFI score from 10 months of age onward when compared to males. We also applied the mSFI in male C57BL/6 mice under chronic subordination stress and in chronic isolation, both of which induced larger increases in social frailty compared to age-matched group-housed males. Lastly, we show that the mSFI is enhanced in mouse models that show accelerated biological aging such as progeroid Ercc1-/Δ and Xpg-/- mice of both sexes compared to age matched littermate wild types. In summary, the mSFI represents a novel index to quantify trajectories of biological aging in mice and may help elucidate links between impaired social behavior and the aging process.

2.
Psychosom Med ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37910129

RESUMEN

OBJECTIVE: Despite advances toward understanding the etiology of Alzheimer's disease (AD), it remains unclear which aspects of this disease are affected by environmental factors. Chronic life stress increases risk for aging-related diseases including AD. The impact of stress on tauopathies remains understudied. We examined the effects of stress elicited by social (chronic subordination stress, CSS) or psychological/physical (chronic restraint stress, CRS) factors - on the PS19 mouse model of tauopathy. METHODS: Male PS19 mice (average age 6.3 months) were randomized to receive CSS, CRS, or to remain as singly-housed controls. Behavioral tests were used to assess anxiety-like behaviors and cognitive functions. Immunofluorescence staining and western blotting analysis were used to measure levels of astrogliosis, microgliosis and tau burden. Immunohistochemistry was used to assess glucocorticoid receptor expression. RESULTS: PS19 mice exhibit neuroinflammation (GFAP, t-tests; p = 0.0297; Iba1, t-tests; p = 0.006) and tau hyperphosphorylation (t-test, p = 0.0446) in the hippocampus, reduced anxiety (post hoc, p = 0.046), and cognitive deficits, when compared to wild type mice. Surprisingly, CRS reduced hippocampal levels of both total tau and phospho-tauS404 (t-test, p = 0.0116), and attenuated some aspects of both astrogliosis and microgliosis in PS19 mice (t-tests, p = 0.068 to p = 0.0003); however, this was not associated with significant changes in neurodegeneration or cognitive function. Anxiety-like behaviors were increased by CRS (post hoc, p = 0.046). Conversely, CSS impaired spatial learning in Barnes Maze without impacting tau phosphorylation or neurodegeneration and having a minimal impact on gliosis. CONCLUSIONS: Our results demonstrate that social or psychological stress can differentially impact anxiety-like behavior, select cognitive functions, and some aspects of tau-dependent pathology in PS19 male mice, providing entry points for the development of experimental approaches designed to slow AD progression.

3.
Mol Metab ; 76: 101781, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37482186

RESUMEN

OBJECTIVE: Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. METHODS: We developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (ΔTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R21→A). RESULTS: We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. ΔTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by an environmental temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue. CONCLUSIONS: The ΔTLQP-21 mouse line can be a valuable resource to conduct mechanistic studies on the necessary role of TLQP-21 in physiology and disease, while also serving as a platform to test the specificity of novel antibodies or immunoassays directed at TLQP-21. Our approach also has far-reaching implications by informing the development of knowledge-based genetic engineering approaches to generate selective loss of function of other peptides encoded by pro-hormones genes, leaving all other peptides within the pro-protein precursor intact and unmodified.


Asunto(s)
Metabolismo Energético , Neuropéptidos , Hormonas Peptídicas , Animales , Ratones , Dieta , Homeostasis , Neuropéptidos/genética , Neuropéptidos/química , Fragmentos de Péptidos/farmacología , Metabolismo Energético/genética , Metabolismo Energético/fisiología
4.
bioRxiv ; 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36993202

RESUMEN

Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. Here, we developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (ΔTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R 21 →A). We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. ΔTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by a temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue.

5.
Stress ; 25(1): 291-304, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35942624

RESUMEN

Childhood cancer survivors have a high risk for premature cardiovascular diseases, mainly due to cardiotoxic cancer treatments such as doxorubicin (DOX). Psychosocial stress is a significant cardiovascular risk factor and an enormous burden in childhood cancer survivors. Although observational studies suggest that psychosocial stress is associated with cardiovascular complications in cancer survivors, there is no translationally relevant animal model to study this interaction. We established a "two-hit" model in which juvenile mice were administered DOX (4 mg/kg/week for 3 weeks), paired to a validated model of chronic subordination stress (CSS) 5 weeks later upon reaching adulthood. Blood pressure, heart rate, and activity were monitored by radio-telemetry. At the end of CSS experiment, cardiac function was assessed by echocardiography. Cardiac fibrosis and inflammation were assessed by histopathologic analysis. Gene expressions of inflammatory and fibrotic markers were determined by PCR. Juvenile exposure to DOX followed by adult-onset CSS caused cardiac fibrosis and inflammation as evident by histopathologic findings and upregulated gene expression of multiple inflammatory and fibrotic markers. Intriguingly, juvenile exposure to DOX blunted CSS-induced hypertension but not CSS-induced tachycardia. There were no significant differences in cardiac function parameters among all groups, but juvenile exposure to DOX abrogated the hypertrophic response to CSS. In conclusion, we established a translationally relevant mouse model of juvenile DOX-induced cardiotoxicity that predisposes to adult-onset stress-induced adverse cardiac remodeling. Psychosocial stress should be taken into consideration in cardiovascular risk stratification of DOX-treated childhood cancer survivors.


Asunto(s)
Doxorrubicina , Estrés Psicológico , Animales , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Modelos Animales de Enfermedad , Doxorrubicina/metabolismo , Doxorrubicina/toxicidad , Fibrosis , Inflamación/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA