Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Free Radic Biol Med ; 224: 9-22, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151834

RESUMEN

Mitophagy plays a crucial role in maintaining the homeostasis of intervertebral disc (IVD). Early Growth Response 1 (EGR1), a conservative transcription factor, is commonly upregulated under oxidative stress conditions and participates in regulating cellular senescence, apoptosis, and inflammatory responses. However, the specific role of EGR1 in nucleus pulposus (NP) cell senescence and mitophagy remains unclear. In this study, through bioinformatics analysis and validation using human tissue specimens, we found that EGR1 is significantly upregulated in IVD degeneration (IDD). Further experimental results demonstrate that knockdown of EGR1 inhibits TBHP-induced NP cell senescence and mitochondrial dysfunction while promoting the activation of mitophagy. The protective effect of EGR1 knockdown on NP cell senescence and mitochondrion disappears upon inhibition of mitophagy with mdivi1. Mechanistic studies reveal that EGR1 suppresses NP cell senescence and mitochondrial dysfunction by modulating the PINK1-Parkin dependent mitophagy pathway. Additionally, EGR1 knockdown delays acupuncture-induced IDD in rats. In conclusion, our study demonstrates that under TBHP-induced oxidative stress, EGR1 knockdown mitigates NP cell senescence and mitochondrial dysfunction through the PINK1-Parkin dependent mitophagy pathway, thereby alleviating IDD.

2.
Curr Pharm Des ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39177140

RESUMEN

AIMS: This study aims to explore the potential mechanism by which Botulinum toxin type A (BoNT/ A) inhibits microglial inflammatory activation through P2X7 receptors (P2X7R). BACKGROUND: BoNT/A is a promising analgesic drug, and previous studies have established that it alleviates Neuropathic Pain (NP) by inhibiting microglial inflammatory activation. This study examined the biomarkers and potential mechanisms by which BoNT/A relieves neuropathic pain by mediating microglial P2X7R and analyzing transcriptome sequencing data from mouse BV-2 microglial cells. OBJECTIVE: The P2X7R agonist Bz-ATP was used to induce microglial inflammatory activation, whilst RNAseq technology was used to explore the biomarkers and potential mechanisms through which BoNT/A suppresses microglial inflammation. METHODS: RNA sequencing was performed on three BV-2 cell samples treated with a P2X7R specific activator (Bz-ATP) and three BV-2 cell samples pre-treated with BoNT/A. Only data that successfully passed quality control measures were included in subsequent analysis. Initially, Differentially Expressed Genes (DEGs) were identified from BoNT/A and control samples, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Biomarkers were then identified by constructing a Protein- Protein Interaction (PPI) network and utilizing the CytoHubba plug-in in Cytoscape software. Lastly, enrichment analysis and regulatory network analysis were performed to elucidate the potential mechanism of BoNT/A in the treatment of NP. RESULTS: 93 DEGs related to the "cell component size regulation" GO term and enriched in the "axon guidance" KEGG pathway were identified. Subsequently, 6 biomarkers were identified, namely PTPRF, CHDH, CKM, Ky, Sema3b, and Sema3f, which were enriched in pathways related to biosynthesis and metabolism, disease progression, signal transduction, and organelle function, including the "ribosome" and "Wnt signaling pathway." Finally, a competing endogenous RNA (ceRNAs) network was constructed from 6 mRNAs, 66 miRNAs, and 31 lncRNAs, forming a complex relationship network. CONCLUSION: Six genes (PTPRF, Sema3b, Sema3f, CHDH, CKM, and Ky) were identified as biomarkers of microglial inflammatory activation following BoNT/A treatment. This finding may provide a valuable reference for the relief and treatment of neuropathic pain.

3.
Front Neurol ; 15: 1405694, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974683

RESUMEN

Objective: According to data from several observational studies, there is a strong association between circulating inflammatory cytokines and postherpetic neuralgia (PHN), but it is not clear whether this association is causal or confounding; therefore, the main aim of the present study was to analyze whether circulating inflammatory proteins have a bidirectional relationship with PHN at the genetic inheritance level using a Mendelian randomization (MR) study. Methods: The Genome-Wide Association Study (GWAS) database was used for our analysis. We gathered data on inflammation-related genetic variation from three GWASs of human cytokines. These proteins included 91 circulating inflammatory proteins, tumor necrosis factor-alpha (TNF-α), macrophage inflammatory protein 1b (MIP-1b), and CXC chemokine 13 (CXCL13). The PHN dataset was obtained from the FinnGen biobank analysis round 5, and consisted of 1,413 cases and 275,212 controls. We conducted a two-sample bidirectional MR study using the TwoSampleMR and MRPRESSO R packages (version R.4.3.1). Our main analytical method was inverse variance weighting (IVW), and we performed sensitivity analyses to assess heterogeneity and pleiotropy, as well as the potential influence of individual SNPs, to validate our findings. Results: According to our forward analysis, five circulating inflammatory proteins were causally associated with the development of PHN: interleukin (IL)-18 was positively associated with PHN, and IL-13, fibroblast growth factor 19 (FGF-19), MIP-1b, and stem cell growth factor (SCF) showed reverse causality with PHN. Conversely, we found that PHN was closely associated with 12 inflammatory cytokines, but no significant correlation was found among the other inflammatory factors. Among them, only IL-18 had a bidirectional causal relationship with PHN. Conclusion: Our research advances the current understanding of the role of certain inflammatory biomarker pathways in the development of PHN. Additional verification is required to evaluate the viability of these proteins as targeted inflammatory factors for PHN-based treatments.

4.
Biomolecules ; 14(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39062505

RESUMEN

The ubiquitin-proteasome system (UPS) maintains intracellular protein homeostasis and cellular function by regulating various biological processes. Ubiquitination, a common post-translational modification, plays a crucial role in the regulation of protein degradation, signal transduction, and other physiological and pathological processes, and is involved in the pathogenesis of various cancers, including osteosarcoma. Osteosarcoma, the most common primary malignant bone tumor, is characterized by high metastatic potential and poor prognosis. It is a refractory bone disease, and the main treatment modalities are surgery combined with chemotherapy. Increasing evidence suggests a close association between UPS abnormalities and the progression of osteosarcoma. Due to the complexity and pleiotropy of the ubiquitination system, each step in the ubiquitination process can be targeted by drugs. In recent years, research and development of inhibitors targeting the ubiquitin system have increased gradually, showing great potential for clinical application. This article reviews the role of the ubiquitination system in the development and treatment of osteosarcoma, as well as research progress, with the hope of improving the therapeutic effects and prognosis of osteosarcoma patients by targeting effective molecules in the ubiquitination system.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Ubiquitinación , Osteosarcoma/metabolismo , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Osteosarcoma/genética , Humanos , Neoplasias Óseas/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Neoplasias Óseas/genética , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Transducción de Señal
5.
Adv Mater ; 36(36): e2405718, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39014920

RESUMEN

As-cast organic solar cells (OSCs) possess tremendous potential for low-cost commercial applications. Herein, five small-molecule acceptors (A1-A5) are designed and synthesized by selectively and elaborately extending the alkyl inner side chain flanking on the pyrrole motif to prepare efficient as-cast devices. As the extension of the alkyl chain, the absorption spectra of the films are gradually blue-shifted from A1 to A5 along with slightly uplifted lowest unoccupied molecular orbital energy levels, which is conducive for optimizing the trade-off between short-circuit current density and open-circuit voltage of the devices. Moreover, a longer alkyl chain improves compatibility between the acceptor and donor. The in situ technique clarifies that good compatibility will prolong molecular assembly time and assist in the preferential formation of the donor phase, where the acceptor precipitates in the framework formed by the donor. The corresponding film-formation dynamics facilitate the realization of favorable film morphology with a suitable fibrillar structure, molecular stacking, and vertical phase separation, resulting in an incremental fill factor from A1 to A5-based devices. Consequently, the A3-based as-cast OSCs achieve a top-ranked efficiency of 18.29%. This work proposes an ingenious strategy to manipulate intermolecular interactions and control the film-formation process for constructing high-performance as-cast devices.

6.
J Am Chem Soc ; 146(27): 18556-18564, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38943576

RESUMEN

Manipulating single electrons at the atomic scale is vital for mastering complex surface processes governed by the transfer of individual electrons. Polarons, composed of electrons stabilized by electron-phonon coupling, offer a pivotal medium for such manipulation. Here, using scanning tunneling microscopy and spectroscopy (STM/STS) and density functional theory (DFT) calculations, we report the identification and manipulation of a new type of polaron, dubbed van der Waals (vdW) polaron, within mono- to trilayer ultrathin films composed of Sb2O3 molecules that are bonded via vdW attractions. The Sb2O3 films were grown on a graphene-covered SiC(0001) substrate via molecular beam epitaxy. Unlike prior molecular polarons, STM imaging observed polarons at the interstitial sites of the molecular film, presenting unique electronic states and localized band bending. DFT calculations revealed the lowest conduction band as an intermolecular bonding state, capable of ensnaring an extra electron through locally diminished intermolecular distances, thereby forming an intermolecular vdW polaron. We also demonstrated the ability to generate, move, and erase such vdW polarons using an STM tip. Our work uncovers a new type of polaron stabilized by coupling with intermolecular vibrations where vdW interactions dominate, paving the way for designing atomic-scale electron transfer processes and enabling precise tailoring of electron-related properties and functionalities.

7.
ACS Sens ; 9(5): 2529-2539, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38723609

RESUMEN

Hydrogen (H2) is crucial in the future global energy landscape due to its eco-friendly properties, but its flammability requires precise monitoring. This study introduces an innovative thermocatalytic H2 sensor utilizing ultrathin mica sheets as substrates, coated on both sides with Pd nanocluster (NC) films. The ultrathin mica substrate ensures robustness and flexibility, enabling the sensor to withstand high temperatures and mechanical deformation. Additionally, it simplifies the fabrication process by eliminating the need for complex microelectro-mechanical systems (MEMS) technology. Constructed through cluster beam deposition, the sensor exhibits exceptional characteristics, including a wide concentration range (from 500 ppm to 4%), rapid response and recovery times (3.1 and 2.4 s for 1% H2), good selectivity, high stability, and repeatability. The operating temperature can be as low as 40 °C, achieving remarkably low power consumption. The study explores the impact of double-sided versus single-sided catalytic layers, revealing significantly higher sensitivity and response with the double-sided configuration due to the increased catalytic surface area. Additionally, the research investigates the relationship between the deposition amount of Pd NCs and the sensor's sensitivity, identifying an optimal value that maximizes performance without excessive use of Pd. The sensor's innovative design and excellent performance position it as a promising candidate for meeting the demands of a hydrogen-based energy economy.


Asunto(s)
Silicatos de Aluminio , Hidrógeno , Nanopartículas del Metal , Paladio , Paladio/química , Hidrógeno/química , Catálisis , Nanopartículas del Metal/química , Silicatos de Aluminio/química , Temperatura , Propiedades de Superficie
8.
Brain Behav ; 14(5): e3489, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38688880

RESUMEN

OBJECTIVE: To investigate the circadian changes of the autonomic function in patients with zoster-associated pain (ZAP). METHODS: A total of 37 patients with ZAP from April 2022 to October 2022 were enrolled as the observation group, and 37 normal volunteers at the same time were selected as the control group. All participants were required to wear a 24-h Holter, which was used to compare the heart rate variability (HRV) between the two groups. HRV analysis involved time- and frequency-domain parameters. RESULTS: There was no statistically significant difference in general information between two groups. Patients with ZAP had an increased mean heart rate and decreased the standard deviation of normal-to-normal (SDNN) R-R interval, the root mean square of the differences (RMSSD) in successive RR interval, low frequency (LF), and high frequency (HF) compared with control groups in all periods (p < .05). The ratio of LF/HF between two groups had no significant difference (p = .245). SDNN had no significant difference between day and night in the control group (p > .05), whereas SDNN of ZAP patients in night period was reduced than that in day period (p < .001). The level of RMSSD during the day was lower than those at night in the control group (p < .05), whereas no significant difference of RMSSD between two periods was observed in patients with ZAP (p > .05). CONCLUSION: The results of this study indicated that ZAP contributes to the decline of autonomic nervous system (ANS) function, especially parasympathetic components. The patients with ZAP lost parasympathetic advantage and had a worse ANS during the night.


Asunto(s)
Sistema Nervioso Autónomo , Ritmo Circadiano , Frecuencia Cardíaca , Herpes Zóster , Humanos , Masculino , Frecuencia Cardíaca/fisiología , Femenino , Ritmo Circadiano/fisiología , Persona de Mediana Edad , Sistema Nervioso Autónomo/fisiopatología , Anciano , Herpes Zóster/fisiopatología , Herpes Zóster/complicaciones , Electrocardiografía Ambulatoria , Adulto
9.
Phys Chem Chem Phys ; 26(17): 13364-13373, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639921

RESUMEN

In this study, we successfully synthesize palladium-decorated indium trioxide (Pd/In2O3) hybrid nanoclusters (NCs) using an advanced dual-target cluster beam deposition (CBD) method, a significant stride in developing high-performance ethanol sensors. The prepared Pd/In2O3 hybrid NCs exhibit exceptional sensitivity, stability, and selectivity to low concentrations of ethanol vapor, with a maximum response value of 101.2 at an optimal operating temperature of 260 °C for 6 at% Pd loading. The dynamic response of the Pd/In2O3-based sensor shows an increase in response with increasing ethanol vapor concentrations within the range of 50 to 1000 ppm. The limit of detection is as low as 24 ppb. The sensor exhibits a high sensitivity of 28.24 ppm-1/2, with response and recovery times of 2.7 and 4.4 seconds, respectively, for 100 ppm ethanol vapor. Additionally, the sensor demonstrates excellent repeatability and stability, with only a minor decrease in response observed over 30 days and notable selectivity for ethanol compared to other common volatile organic compounds. The study highlights the potential of Pd/In2O3 NCs as promising materials for ethanol gas sensors, leveraging the unique capabilities of CBD for controlled synthesis and the catalytic properties of Pd for enhanced gas-sensing performance.

11.
Pharmacol Ther ; 258: 108642, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614254

RESUMEN

Platinum compounds such as cisplatin, carboplatin and oxaliplatin are widely used in chemotherapy. Cisplatin induces cytotoxic DNA damage that blocks DNA replication and gene transcription, leading to arrest of cell proliferation. Although platinum therapy alone is effective against many tumors, cancer cells can adapt to the treatment and gain resistance. The mechanisms for cisplatin resistance are complex, including low DNA damage formation, high DNA repair capacity, changes in apoptosis signaling pathways, rewired cell metabolisms, and others. Drug resistance compromises the clinical efficacy and calls for new strategies by combining cisplatin with other therapies. Exciting progress in cancer treatment, particularly development of poly (ADP-ribose) polymerase (PARP) inhibitors and immune checkpoint inhibitors, opened a new chapter to combine cisplatin with these new cancer therapies. In this Review, we discuss how platinum synergizes with PARP inhibitors and immunotherapy to bring new hope to cancer patients.


Asunto(s)
Antineoplásicos , Cisplatino , Inmunoterapia , Neoplasias , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Cisplatino/uso terapéutico , Cisplatino/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Inmunoterapia/métodos , Animales , Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología
12.
Virulence ; 15(1): 2333271, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38515339

RESUMEN

Staphylococcus pseudintermedius (S. pseudintermedius) is a common pathogen that causes canine corneal ulcers. However, the pathogenesis remained unclear. In this study, it has been demonstrated that S. pseudintermedius invaded canine corneal epithelial cells (CCECs) intracellularly, mediating oxidative damage and pyroptosis by promoting the accumulation of intracellular reactive oxygen species (ROS) and activating the NLRP3 inflammasome. The canine corneal stroma was infected with S. pseudintermedius to establish the canine corneal ulcer model in vivo. The intracellular infectious model in CCECs was established in vitro to explore the mechanism of the ROS - NLRP3 signalling pathway during the S. pseudintermedius infection by adding NAC or MCC950. Results showed that the expression of NLRP3 and gasdermin D (GSDMD) proteins increased significantly in the infected corneas (p < 0.01). The intracellular infection of S. pseudintermedius was confirmed by transmission electron microscopy and immunofluorescent 3D imaging. Flow cytometry analysis revealed that ROS and pyroptosis rates increased in the experimental group in contrast to the control group (p < 0.01). Furthermore, NAC or MCC950 inhibited activation of the ROS - NLRP3 signalling pathway and pyroptosis rate significantly, by suppressing pro-IL-1ß, cleaved-IL-1ß, pro-caspase-1, cleaved-caspase-1, NLRP3, GSDMD, GSDMD-N, and HMGB1 proteins. Thus, the research confirmed that oxidative damage and pyroptosis were involved in the process of CCECs infected with S. pseudintermedius intracellularly by the ROS - NLRP3 signalling pathway. The results enrich the understanding of the mechanisms of canine corneal ulcers and facilitate the development of new medicines and prevention measures.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Staphylococcus , Animales , Perros , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Úlcera , Línea Celular , Inflamasomas/metabolismo , Células Epiteliales/metabolismo , Sulfonamidas
13.
J Gastrointest Oncol ; 15(1): 468-477, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38482229

RESUMEN

Background: Given the pivotal role of neuroinflammation in chronic pain and that the paraventricular nucleus of the hypothalamus (PVN) is a crucial brain region involved in visceral pain regulation, we sought to investigate whether the targeted modulation of microglia and astrocytes in the PVN could ameliorate pancreatic cancer-induced visceral pain (PCVP) in mice. Methods: Using a mouse model of PCVP, achieved by tumor cell injection at the head of the pancreas, we measure the number of glial cells, and at the same time we employed minocycline to inhibit microglia and chemogenetic methods to suppress astrocytes in order to investigate the respective roles of microglia and astrocytes within the PVN in PCVP. Results: Mice exhibited visceral pain at 12, 15 and 18 days post-tumor cell injection. We observed a significant increase in the population of both microglia and astrocytes. Inhibition of microglial activity through minocycline microinjection into the PVN resulted in alleviation of visceral pain within 30 and 60 min. Similarly, chemogenetic inhibition of astrocyte function at 14 and 21 days post-injection also led to relief from visceral pain. Conclusions: This study found that PVN microglia and astrocytes were involved in regulating PCVP. Our results suggest that targeting glia may be a potential approach for alleviating visceral pain in patients with pancreatic cancer.

14.
J Gastrointest Oncol ; 15(1): 458-467, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38482250

RESUMEN

Background: For patients with pancreatic cancer, visceral pain is a debilitating symptom that significantly compromises their quality of life. Unfortunately, the lack of effective treatment options can be attributed to our limited understanding of the neural circuitry underlying this phenomenon. The primary objective of this study is to elucidate the fundamental mechanisms governing visceral pain induced by pancreatic cancer in murine models. Methods: A mouse model of pancreatic cancer visceral pain was established in C57BL/6N mice through the intrapancreatic injection of mPAKPC-luc cells. Abdominal mechanical hyperalgesia and hunch score were employed to evaluate visceral pain, whereas the in vitro electrophysiological patch-clamp technique was utilized to record the electrophysiological activity of GABAergic neurons. Specific neuron ablation and chemogenetics methods were employed to investigate the involvement of GABAergic neurons in pancreatic cancer-induced visceral pain. Results: In vitro electrophysiological results showed that the firing frequency of GABAergic neurons in the paraventricular nucleus of the hypothalamus (PVN) was decreased. Specific destruction of GABAergic neurons in the PVN exacerbated visceral pain induced by pancreatic cancer. Chemogenetics activation of GABAergic neurons in the PVN alleviated visceral pain induced by pancreatic cancer. Conclusions: GABAergic neurons located in PVN play a crucial role in precipitating visceral pain induced by pancreatic cancer in mice, thereby offering novel insights for identifying effective targets to treat pancreatic cancer-related visceral pain.

15.
Adv Mater ; 36(23): e2312014, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38380583

RESUMEN

Perovskite photovoltaics have emerged as the most promising candidates for next-generation light-to-electricity technology. However, their practical application still suffers from energy loss induced by intrinsic defects within the perovskite lattice. Here, a refined defect passivation in perovskite films is designed, which shows a multi-interaction mechanism between the perovskite and passivator. Interestingly, a shift of molecular bonding is observed upon cooling down the film, leading to a stronger passivation of iodine/formamidine vacancies. Such mechanism on device under low-light and low-temperature conditions is further leveraged and a record efficiency over 45% with durable ambient stability (T90 > 4000 h) is obtained. The pioneer application of perovskite solar cells in above dual extreme conditions in this work reveals the key principles of designing functional groups for the passivators, and also demonstrates the capability of perovskites for diverse terrestrial energy conversion applications in demanding environments such as polar regions and outer space.

16.
Proc Natl Acad Sci U S A ; 121(4): e2310854121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38241433

RESUMEN

Noncoding mutation hotspots have been identified in melanoma and many of them occur at the binding sites of E26 transformation-specific (ETS) proteins; however, their formation mechanism and functional impacts are not fully understood. Here, we used UV (Ultraviolet) damage sequencing data and analyzed cyclobutane pyrimidine dimer (CPD) formation, DNA repair, and CPD deamination in human cells at single-nucleotide resolution. Our data show prominent CPD hotspots immediately after UV irradiation at ETS binding sites, particularly at sites with a conserved TTCCGG motif, which correlate with mutation hotspots identified in cutaneous melanoma. Additionally, CPDs are repaired slower at ETS binding sites than in flanking DNA. Cytosine deamination in CPDs to uracil is suggested as an important step for UV mutagenesis. However, we found that CPD deamination is significantly suppressed at ETS binding sites, particularly for the CPD hotspot on the 5' side of the ETS motif, arguing against a role for CPD deamination in promoting ETS-associated UV mutations. Finally, we analyzed a subset of frequently mutated promoters, including the ribosomal protein genes RPL13A and RPS20, and found that mutations in the ETS motif can significantly reduce the promoter activity. Thus, our data identify high UV damage and low repair, but not CPD deamination, as the main mechanism for ETS-associated mutations in melanoma and uncover important roles of often-overlooked mutation hotspots in perturbing gene transcription.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Citosina , Desaminación , Neoplasias Cutáneas/genética , Mutación , Dímeros de Pirimidina , Sitios de Unión , Rayos Ultravioleta , Daño del ADN , Reparación del ADN/genética
17.
Adv Mater ; 36(3): e2305356, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37555531

RESUMEN

Most top-rank organic solar cells (OSCs) are manufactured by the halogenated solvent chloroform, which possesses a narrow processing window due to its low-boiling point. Herein, based on two high-boiling solvents, halogenated solvent chlorobenzene (CB) and non-halogenated green solvent ortho-xylene (OX), preparing active layers with the hot solution is put forward to enhance the performance of the OSCs. In situ test and morphological characterization clarify that the hot-casting strategy assists in the fast and synchronous molecular assembly of both donor and acceptor in the active layer, contributing to preferable donor/acceptor ratio, vertical phase separation, and molecular stacking, which is beneficial to charge generation and extraction. Based on the PM6:BO-4Cl, the hot-casting OSCs with a wide processing window achieve efficiencies of 18.03% in CB and 18.12% in OX, which are much higher than the devices processed with room temperature solution. Moreover, the hot-casting devices with PM6:BTP-eC9 deliver a remarkable fill factor of 80.31% and efficiency of 18.52% in OX, representing the record value among binary devices with green solvent. This work demonstrates a facile strategy to manipulate the molecular distribution and arrangement for boosting the efficiency of OSCs with high-boiling solvents.

18.
Environ Mol Mutagen ; 65 Suppl 1: 72-81, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37545038

RESUMEN

DNA damage occurs throughout life from a variety of sources, and it is imperative to repair damage in a timely manner to maintain genome stability. Thus, DNA repair mechanisms are a fundamental part of life. Nucleotide excision repair (NER) plays an important role in the removal of bulky DNA adducts, such as cyclobutane pyrimidine dimers from ultraviolet light or DNA crosslinking damage from platinum-based chemotherapeutics, such as cisplatin. A main component for the NER pathway is transcription factor IIH (TFIIH), a multifunctional, 10-subunit protein complex with crucial roles in both transcription and NER. In transcription, TFIIH is a component of the pre-initiation complex and is important for promoter opening and the phosphorylation of RNA Polymerase II (RNA Pol II). During repair, TFIIH is important for DNA unwinding, recruitment of downstream repair factors, and verification of the bulky lesion. Several different disease states can arise from mutations within subunits of the TFIIH complex. Most strikingly are xeroderma pigmentosum (XP), XP combined with Cockayne syndrome (CS), and trichothiodystrophy (TTD). Here, we summarize the recruitment and functions of TFIIH in the two NER subpathways, global genomic (GG-NER) and transcription-coupled NER (TC-NER). We will also discuss how TFIIH's roles in the two subpathways lead to different genetic disorders.


Asunto(s)
Reparación por Escisión , Xerodermia Pigmentosa , Humanos , Reparación del ADN/genética , Xerodermia Pigmentosa/genética , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Daño del ADN/genética , ADN/genética , Nucleótidos , Transcripción Genética
19.
J Cell Mol Med ; 28(2): e18048, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37986543

RESUMEN

Intervertebral disc degeneration (IVDD) is a common chronic musculoskeletal disease that causes chronic low back pain and imposes an immense financial strain on patients. The pathological mechanisms underlying IVDD have not been fully elucidated. The development of IVDD is closely associated with abnormal epigenetic changes, suggesting that IVDD progression may be controlled by epigenetic mechanisms. Consequently, this study aimed to investigate the role of epigenetic regulation, including DNA methyltransferase 3a (DNMT3a)-mediated methylation and peroxisome proliferator-activated receptor γ (PPARγ) inhibition, in IVDD development. The expression of DNMT3a and PPARγ in early and late IVDD of nucleus pulposus (NP) tissues was detected using immunohistochemistry and western blotting analyses. Cellularly, DNMT3a inhibition significantly inhibited IL-1ß-induced apoptosis and extracellular matrix (ECM) degradation in rat NP cells. Pretreatment with T0070907, a specific inhibitor of PPARγ, significantly reversed the anti-apoptotic and ECM degradation effects of DNMT3a inhibition. Mechanistically, DNMT3a modified PPARγ promoter hypermethylation to activate the nuclear factor-κB (NF-κB) pathway. DNMT3a inhibition alleviated IVDD progression. Conclusively, the results of this study show that DNMT3a activates the NF-κB pathway by modifying PPARγ promoter hypermethylation to promote apoptosis and ECM degradation. Therefore, we believe that the ability of DNMT3a to mediate the PPARγ/NF-κB axis may provide new ideas for the potential pathogenesis of IVDD and may become an attractive target for the treatment of IVDD.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animales , Humanos , Ratas , ADN Metiltransferasa 3A , Epigénesis Genética , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/patología , Metilación , FN-kappa B/metabolismo , Núcleo Pulposo/patología , PPAR gamma/genética , PPAR gamma/metabolismo , Ratas Sprague-Dawley , Transducción de Señal
20.
J Ethnopharmacol ; 321: 117434, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37992881

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The clinical efficacy of the hospital preparation compound granules of Hedyotis diffusa (CGHD), which is composed of Hedyotis diffusa Willd, Smilax china L., Solanum lyratum Thunb., has accumulated a good reputation over the past decades. However, because it is a hospital preparation, few researchers have paid attention to it, resulting in a lack of systematic basic research studies. Thus, it is not clear whether there are safety concerns that restrict its clinical application, and toxicological evaluation of CGHD is needed. AIM OF THE STUDY: The aim of this study was to evaluate the safety of CGHD by conducting acute toxicity and long-term toxicity experiments, with the objective of providing evidence for its clinical safety and a theoretical foundation for its clinical application. MATERIALS AND METHODS: KM mice were selected for the acute toxicity experiment and were administered water or CGHD-E 3 times within 24 h. The reactions of the animals to CGHD treatment were observed and recorded within 1 h after administration and then once a day for 14 consecutive days. SD rats were selected to conduct the long-term toxicity experiment. The drug-treated groups were administered different doses of CGHD-E, which were equivalent to 10 times, 20 times and 50 times the clinical dose in humans. The rats were administered the drug for 28 consecutive days. After 28 days, the animals were sacrificed, and routine blood tests, blood coagulation function analysis, liver and kidney function tests, and glycolipid metabolism related tests were conducted. The major organs of the rats were collected to calculate organ coefficients and perform hematoxylin-eosin (HE) staining. RESULTS: In the CGHD-E acute toxicity experiment, the drug-treated groups did not show adverse reactions or poisoning symptoms, and the maximum tolerated dose of CGHD-E in mice was greater than 45.072 g/kg. In the long-term toxicity experiment, drug-treated rats generally exhibited a good condition, but continuous administration decreased on body weight and food intake, especially in male rats. Coagulation function alterations and the impact on the liver during long-term drug administration were also assessed, which should be emphasized in clinical applications. No significant toxic effects were observed according to routine blood tests or test of liver and kidney function, glucose and lipid metabolism, or ion metabolism. CONCLUSIONS: The results of this study showed that CGHD was nontoxic or had low toxicity, providing not only a scientific basis for its clinical application, determining the appropriate clinical dose and monitoring clinical toxicity but also theoretical support for subsequent clinical drug trials.


Asunto(s)
Hedyotis , Ratones , Humanos , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Hígado , Peso Corporal , Pruebas de Función Renal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA