Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell Signal ; 119: 111173, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604343

RESUMEN

Targeted therapy based on BRD4 and MYC shows promise due to their well-researched oncogenic functions in cancer, but their tumor-suppressive roles are less understood. In this study, we employ a systematic approach to delete exons that encode the low-complexity domain (LCD) of BRD4L in cells by using CRISPR-Cas9. In particular, the deletion of exon 14 (BRD4-E14) results in cellular morphological changes towards spindle-shaped and loosely packed. BRD4-E14 deficient cells show increased cell migration and reduced cell adhesion. The expression of S100A10 was significantly increased in cells lacking E14. BRD4L binds with MYC via the E14-encoded region of the LCD to inhibit the expression of S100A10. In cancer tissues, there is a positive correlation between BRD4 and MYC, while both of these proteins are negatively associated with S100A10 expression. Finally, knocking out the BRD4-E14 region or MYC promotes tumor growth in vivo. Together, these data support a tumor-suppressive role of BRD4L and MYC in some contexts. This discovery emphasizes the significance of a discreetly design and precise patient recruitment in clinical trials that testing cancer therapy based BRD4 and MYC.


Asunto(s)
Proteínas de Ciclo Celular , Movimiento Celular , Proteínas Proto-Oncogénicas c-myc , Proteínas S100 , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas S100/metabolismo , Proteínas S100/genética , Animales , Línea Celular Tumoral , Ratones , Invasividad Neoplásica , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Femenino , Proteínas que Contienen Bromodominio
2.
Discov Oncol ; 15(1): 98, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38565708

RESUMEN

Ferroptosis, an iron-dependent form of programmed cell death, is a promising strategy for cancer treatment. Bromodomain-containing protein 4 (BRD4) is an epigenetic reader and a promising target for cancer therapeutics. However, the role of BRD4 in ferroptosis is controversial and the value of the interaction between BRD4 inhibitors and ferroptosis inducers remains to be explored. Here, we found that BRD4 inhibition greatly enhanced erastin-induced ferroptosis in different types of cells, including HEK293T, HeLa, HepG2, RKO, and PC3 cell lines. Knocking down BRD4 in HEK293T and HeLa cells also promoted erastin-induced cell death. BRD4 inhibition by JQ-1 and I-BET-762 or BRD4 knockdown resulted in substantial accumulation of reactive oxygen species (ROS) in both HEK293T and HeLa cells. The effect of BRD4 inhibition on ferroptosis-associated genes varied in different cells. After using BRD4 inhibitors, the expression of FTH1, Nrf2, and GPX4 increased in HEK293T cells, while the levels of VDAC2, VDAC3, and FSP1 decreased. In HeLa cells, the expression of FTH1, VDAC2, VDAC3, Nrf2, GPX4, and FSP1 was reduced upon treatment with JQ-1 and I-BET-762. Consistently, the level of FSP1 was greatly reduced in HEK293T and HeLa cells with stable BRD4 knockdown compared to control cells. Furthermore, ChIP-sequencing data showed that BRD4 bound to the promoter of FSP1, but the BRD4 binding was greatly reduced upon JQ-1 treatment. Our results suggest that ROS accumulation and FSP1 downregulation are common mechanisms underlying increased ferroptosis with BRD4 inhibitors. Thus, BRD4 inhibitors might be more effective in combination with ferroptosis inducers, especially in FSP1-dependent cancer cells.

3.
Adv Biol (Weinh) ; 8(3): e2300334, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38213020

RESUMEN

Repeat dipeptides such as poly(proline-arginine) (polyPR) are generated from the hexanucleotide GGGGCC repeat expansions in the C9orf72 gene. These dipeptides are often considered as the genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In the study, fluorescein isothiocyanate (FITC) labeled PR20 is used to investigate PR20-induced cell death. The findings reveal that the cell death induced by PR20 is dependent on its nuclear distribution and can be blocked by a nuclear import inhibitor called importazole. Further investigation reveals that BRD4 inhibitors, such as JQ-1 and I-BET762, restrict cytoplasmic localization of PR20, thereby reducing its cytotoxic effect. Mechanistically, the inhibition of BRD4 leads to an increase in the expression of numerous histones, resulting in the accumulation of histones in the cytoplasm. These cytoplasmic histones associate with PR20 and limit its distribution within the nucleus. Notably, the ectopic expression of histones alone is enough to confer protection to cells treated with PR20. In addition, phenylephrine (PE) induces cellular hypertrophy and cytoplasmic distribution of histone, which also helps protect cells from PR20-induced cell death. The research suggests that temporarily inducing the presence of cytoplasmic histones may alleviate the neurotoxic effects of dipeptide repeat proteins.


Asunto(s)
Histonas , Proteínas Nucleares , Histonas/genética , Histonas/metabolismo , Histonas/farmacología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteína C9orf72/farmacología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacología , Expansión de las Repeticiones de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/farmacología , Dipéptidos/genética , Dipéptidos/metabolismo , Dipéptidos/farmacología , Muerte Celular/genética
4.
J Invest Dermatol ; 144(3): 645-658.e7, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37832842

RESUMEN

Infantile hemangioma (IH) is the most frequent vascular tumor of infancy with unclear pathogenesis; disordered angiogenesis is considered to be involved in its formation. Apolipoprotein A-I binding protein (AIBP)-also known as NAXE (NAD [P]HX epimerase)-a regulator of cholesterol metabolism, plays a critical role in the pathological angiogenesis of mammals. In this study, we found that AIBP had much lower expression levels in both tissues from patients with IH and hemangioma endothelial cells (HemECs) than in adjacent normal tissues and human dermal vascular endothelial cells, respectively. Knockout of NAXE by CRISPR-Cas9 in HemECs enhanced tube formation and migration, and NAXE overexpression impaired tube formation and migration of HemECs. Interestingly, AIBP suppressed the proliferation of HemECs in hypoxia. We then found that reduced expression of AIBP correlated with increased hypoxia-inducible factor 1α levels in tissues from patients with IH and HemECs. Further mechanistic investigation demonstrated that AIBP disrupted hypoxia-inducible factor 1α signaling through cholesterol metabolism under hypoxia. Notably, AIBP significantly inhibited the development of IH in immunodeficient mice. Furthermore, using the validated mouse endothelial cell (ie, EOMA cells) and Naxe-/- mouse models, we demonstrated that both endogenous AIBP from tumors and AIBP in the tumor microenvironment limit the formation of hemangioma. These findings suggested that AIBP was a player in the pathogenesis of IH and could be a potential pharmacological target for treating IH.


Asunto(s)
Células Endoteliales , Hemangioma , Humanos , Animales , Ratones , Células Endoteliales/metabolismo , Apolipoproteína A-I/metabolismo , Ratones Noqueados , Hemangioma/genética , Colesterol/metabolismo , Racemasas y Epimerasas/metabolismo , Hipoxia/metabolismo , Mamíferos , Microambiente Tumoral
5.
Oncogenesis ; 12(1): 56, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985752

RESUMEN

Although the transcriptional regulation of the programmed death ligand 1 (PD-L1) promoter has been extensively studied, the transcription factor residing in the PD-L1 super-enhancer has not been comprehensively explored. Through saturated CRISPR-Cas9 screening of the core region of the PD-L1 super-enhancer, we have identified a crucial genetic locus, referred to as locus 22, which is essential for PD-L1 expression. Locus 22 is a potential binding site for NFE2:MAF transcription factors. Although genetic silencing of NRF2 (NFE2L2) did not result in a reduction of PD-L1 expression, further analysis reveals that MAFG and NFE2L1 (NRF1) play a critical role in the expression of PD-L1. Importantly, lipopolysaccharides (LPS) as the major component of intratumoral bacteria could greatly induce PD-L1 expression, which is dependent on the PD-L1 super-enhancer, locus 22, and NFE2L1/MAFG. Mechanistically, genetic modification of locus 22 and silencing of MAFG greatly reduce BRD4 binding and loop formation but have minimal effects on H3K27Ac modification. Unlike control cells, cells with genetic modification of locus 22 and silencing of NFE2L1/MAFG failed to escape T cell-mediated killing. In breast cancer, the expression of MAFG is positively correlated with the expression of PD-L1. Taken together, our findings demonstrate the critical role of locus 22 and its associated transcription factor NFE2L1/MAFG in super-enhancer- and LPS-induced PD-L1 expression. Our findings provide new insight into understanding the regulation of PD-L1 transcription and intratumoral bacteria-mediated immune evasion.

6.
Cell Signal ; 110: 110850, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37579928

RESUMEN

Extensive studies have demonstrated critical roles of Regnase-1 in skin inflammation; however the role of N4BP1, a member of Regnase-1 family, in skin is largely unexplored. Here, we found that N4BP1 was highly expressed in skin and its expression was further increased upon skin injury. Compared to wildtype mice, N4BP1 deficient mice showed severe skin injury upon tape-stripping and burns. Overexpression of N4BP1 in HaCaT cells caused more cuboidal with higher cell-to-cell packing, while reduced expression of N4BP1 made cells become more spindle shaped and loosely packed. Overexpression of N4BP1 promoted cell migration, while silence of N4BP1 reduced migration. N4BP1 deficient HaCaT cells were more sensitive to heats compared to control cells. RNA profiling in N4BP1 genetically modified cells demonstrated that N4BP1 broadly affects cellular behaviors such as epithelium development. RNA profiling, RT-PCR verification, WB analysis and RNA immunoprecipitation demonstrated that MMP9 was one of N4BP1 targets that significantly increased in N4BP1 deficient HaCaT cells and skin tissues. Collectively, our results demonstrate a protective role of N4BP1 in skin injury through broadly affecting cellular behaviors of keratinocytes. Furthermore, we identified MMP9 is a target of N4BP1 in keratinocytes. Our findings provide new insight to understand how N4BP1 protects skin under injury.


Asunto(s)
Quemaduras , Metaloproteinasa 9 de la Matriz , Proteínas Nucleares , Proteínas de Unión al ARN , Animales , Ratones , Quemaduras/metabolismo , Queratinocitos/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , ARN/metabolismo , Piel , Células HaCaT , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas Nucleares/metabolismo
7.
Expert Rev Mol Med ; 25: e25, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37503730

RESUMEN

The nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) signaling pathway, which is conserved in invertebrates, plays a significant role in human diseases such as inflammation-related diseases and carcinogenesis. Angiogenesis refers to the growth of new capillary vessels derived from already existing capillaries and postcapillary venules. Maintaining normal angiogenesis and effective vascular function is a prerequisite for the stability of organ tissue function, and abnormal angiogenesis often leads to a variety of diseases. It has been suggested that NK-κB signalling molecules under pathological conditions play an important role in vascular differentiation, proliferation, apoptosis and tumourigenesis by regulating the transcription of multiple target genes. Many NF-κB inhibitors are being tested in clinical trials for cancer treatment and their effect on angiogenesis is summarised. In this review, we will summarise the role of NF-κB signalling in various neovascular diseases, especially in tumours, and explore whether NF-κB can be used as an attack target or activation medium to inhibit tumour angiogenesis.


Asunto(s)
FN-kappa B , Neoplasias , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal , Proteínas I-kappa B/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neovascularización Patológica/metabolismo , Apoptosis
8.
BMC Biol ; 21(1): 75, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024934

RESUMEN

BACKGROUND: Angiogenesis plays important roles in physiological and pathologic conditions, but the mechanisms underlying this complex process often remain to be elucidated. In recent years, liquid-liquid phase separation (LLPS) has emerged as a new concept to explain many cellular functions and diseases. However, whether LLPS is involved in angiogenesis has not been studied until now. Here, we investigated the potential role of LLPS in angiogenesis and endothelial function. RESULTS: We found 1,6-hexanediol (1,6-HD), an inhibitor of LLPS, but not 2,5-hexanediol (2,5-HD) dramatically decreases neovascularization of Matrigel plug and angiogenesis response of murine corneal in vivo. Moreover, 1,6-HD but not 2,5-HD inhibits microvessel outgrowth of aortic ring and endothelial network formation. The endothelial function of migration, proliferation, and cell growth is suppressed by 1,6-HD. Global transcriptional analysis by RNA-sequencing reveals that 1,6-HD specifically blocks cell cycle and downregulates cell cycle-related genes including cyclin A1. Further experimental data show that 1,6-HD treatment greatly reduces the expression of cyclin A1 but with minimal effect on cyclin D1, cyclin E1, CDK2, and CDK4. The inhibitory effect of 1,6-HD on cyclin A1 is mainly through transcriptional regulation because proteasome inhibitors fail to rescue its expression. Furthermore, overexpression of cyclin A1 in HUVECs largely rescues the dysregulated tube formation upon 1,6-HD treatment. CONCLUSIONS: Our data reveal a critical role of LLPS inhibitor 1,6-HD in angiogenesis and endothelial function, which specifically affects endothelial G1/S transition through transcriptional suppression of CCNA1, implying LLPS as a possible novel player to modulate angiogenesis, and thus, it might represent an interesting therapeutic target to be investigated in clinic angiogenesis-related diseases in future.


Asunto(s)
Ciclina A1 , Neovascularización Patológica , Humanos , Ratones , Animales , Ciclina A1/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Movimiento Celular , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Proliferación Celular
9.
Cell Biochem Funct ; 40(5): 501-515, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35670653

RESUMEN

The unique morphology and gene expression of podocytes are critical for kidney function, and their abnormalities lead to nephropathies such as diabetic nephropathy and membranous nephropathy. Podocytes cultured in vitro are valuable tools to dissect the molecular mechanism of podocyte injury relative to nephropathy, however, these models have never been comprehensively compared. Here, we comprehensively compared the morphology, cytoskeleton, cell adhesion, cell spreading, cell migration, and lipid metabolism under five commonly used in vitro models including lipopolysaccharide (LPS), puromycin aminonucleoside (PAN), doxorubicin (Dox), high glucose, and glucose deprivation. Our results indicate that all stimulations significantly downregulate the expression of synaptopodin both in human and mouse podocytes. All stimulations affect podocyte morphology but show different intensity and phenotypes. In general, the five stimulations reduce cell adhesion, cell spreading, and cell migration, but the effect in human and mouse podocytes is slightly different. Human podocytes show high expression of genes enriched in the pentose phosphate pathway. Dox and PAN treatment show a strong effect on gene expression in lipid metabolism, while the other three stimulations show minimal effect. The expression of phospholipase A2 receptor (PLA2R1) and type-1 domain-containing protein 7 A (THSD7A) show opposite trends in given cells. Stimulations can dramatically affect the expression of PLA2R1 and THSD7A. Inhibition of super-enhancers reduces PLA2R1 and THSD7A expression, but ERK inhibition enhances their expression. Our results demonstrate distinctive responses in five commonly used in vitro podocyte injury models and the dynamic expression of PLA2R1 and THSD7A, which supply novel information to select suitable podocyte injury models.


Asunto(s)
Podocitos , Receptores de Fosfolipasa A2 , Trombospondinas , Animales , Autoanticuerpos/metabolismo , Glomerulonefritis Membranosa/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Ratones , Podocitos/metabolismo , Receptores de Fosfolipasa A2/metabolismo , Trombospondinas/metabolismo
10.
Acta Pharm Sin B ; 12(3): 1041-1053, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35530130

RESUMEN

The immune checkpoint blockade (ICB) targeting on PD-1/PD-L1 has shown remarkable promise in treating cancers. However, the low response rate and frequently observed severe side effects limit its broad benefits. It is partially due to less understanding of the biological regulation of PD-L1. Here, we systematically and comprehensively summarized the regulation of PD-L1 from nuclear chromatin reorganization to extracellular presentation. In PD-L1 and PD-L2 highly expressed cancer cells, a new TAD (topologically associating domain) (chr9: 5,400,000-5,600,000) around CD274 and CD273 was discovered, which includes a reported super-enhancer to drive synchronous transcription of PD-L1 and PD-L2. The re-shaped TAD allows transcription factors such as STAT3 and IRF1 recruit to PD-L1 locus in order to guide the expression of PD-L1. After transcription, the PD-L1 is tightly regulated by miRNAs and RNA-binding proteins via the long 3'UTR. At translational level, PD-L1 protein and its membrane presentation are tightly regulated by post-translational modification such as glycosylation and ubiquitination. In addition, PD-L1 can be secreted via exosome to systematically inhibit immune response. Therefore, fully dissecting the regulation of PD-L1/PD-L2 and thoroughly detecting PD-L1/PD-L2 as well as their regulatory networks will bring more insights in ICB and ICB-based combinational therapy.

11.
Cell Biochem Funct ; 40(4): 379-390, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35411950

RESUMEN

Activated B-cell-like (ABC)-diffuse large B-cell lymphoma (ABC-DLBCL) is a common subtype of non-Hodgkin's lymphoma with poor prognosis. The survival of ABC-DLBCL relies on constitutive activation of BCR signaling, but the underlying molecular mechanism is not fully addressed. By mining The Cancer Genome Atlas database, we found that the expression of ubiquitin-specific protease 7 (USP7) is significantly elevated in three cancer types including DLBCL. Interestingly, unlike germinal center B-cell-like (GCB)-DLBCL, ABC-DLBCL shows upregulated expression of USP7. Inhibiting the enzymatic activity of USP7 (P22077) has a drastic effect on ABC-DLBCL, but not GCB-DLBCL cells. Compared to GCB-DLBCL, ABC-DLBCL cells show transcriptional upregulation of multiple components of BCR-signaling. USP7 inhibition significantly reduces the expression of upregulated components of BCR signaling. Mechanistically, USP7 inhibition greatly reduces the methylation of histone 3 on lysine 4 (H3K4me2), which is an epigenetic marker for active enhancers. USP7 inhibition greatly reduces the protein level of WDR5 and MLL2, key components of lysine-specific methyltransferase complex (complex of proteins associated with Set1 [COMPASS]). In ABC-DLBCL cells, USP7 stabilizes WDR5 and MLL2. In patients, the expression of USP7 is significantly associated with components of BCR signaling (LYN, SYK, BTK, PLCG2, PRKCB, MALT1, BCL10, and CARD11) and targets of BCR signaling (MYC and IRF4). In summary, we demonstrated an essential role of USP7 in ABC-DLBCL by organizing an oncogenic epigenetic program via stabilization of WDR5 and MLL2. Targeting USP7 might be a novel and efficient approach to treat patients with ABC-DLBCL and it might be better than targeting individual components such as BTK in BCR signaling.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Péptidos y Proteínas de Señalización Intracelular , Linfoma de Células B Grandes Difuso , Proteínas de Neoplasias/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Lisina/genética , Lisina/metabolismo
12.
Genes Genomics ; 44(10): 1259-1269, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35175516

RESUMEN

BACKGROUND: Heat shock response is a protected mechanism against environmental changes for the organism, which must be tightly regulated. Bromodomain and extra terminal-containing protein family (BETs) regulate numerous gene expression in many physiological and pathological conditions, including viral infection. SV40 is considered as a highly human disease-associated virus. OBJECTIVE: We aimed to explore whether BETs play a role in heat shock in SV40 large T antigen transfected cells. METHODS: SV40LTA was transfected in HeLa cells using the Lipofectamine 8000. BETs inhibitor JQ1 and I-BET-762 was employed to treat transfected cells and HEK-293 T cells. Heat shock treatment was performed to determine the effect of JQ1 and I-BET-762 on these cells. Western blot and quantitative RT-PCR were carried out to assess the expression of HSP70 and other HSPs. RESULTS: We found that inhibition of BETs by JQ1 and I-BET-762 protects cells from heat shock-induced death in HEK293T cells. Both JQ1 and I-BET-762 induce the expression of HSPs and HSF1 in HEK-293 T cells. However, neither JQ1 nor I-BET-762 fail to induce the expression of HSPs in either HeLa or HBL-1 cells. When SV40 large T antigen was transfected into HeLa cells, the induction of HSP70 expressing and the protection of heat shock-induced cell death are reproduced by JQ1 and IBET treatment in these transfected cells. CONCLUSIONS: Inhibition of BETs by JQ1 and I-BET-762 prevents heat shock-induced cell death via upregulating HSPs in SV40 large T antigen transfected cells. Our data indicate a novel function of BETs in SV40 large T antigen transformed cells, affecting HSPs and HSF1 as well as its function on heat shock response.


Asunto(s)
Antígenos Virales de Tumores , Proteínas de Unión al ADN , Muerte Celular , Proteínas de Unión al ADN/genética , Células HEK293 , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Factores de Transcripción del Choque Térmico/genética , Respuesta al Choque Térmico , Humanos
13.
Tumori ; 108(1): 63-76, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34165025

RESUMEN

BACKGROUND: Hypoxia is a hallmark of solid cancers, including hepatocellular carcinoma (HCC). There is scarce information about how hypoxia avoids immunologic stress and maintains a cancer-promoting microenvironment. METHODS: The Cancer Genome Atlas, RNA-seq data, and Oncomine database were used to discover the correlation of RNASEH2A with tumor progression; then expression of RNASEH2A mRNA and protein were detected in HCC tissues and cells subjected to hypoxia or with the treatment of CoCl2 via real-time quantitative polymerase chain reaction and immunochemistry assays. Finally, the effect of RNASEH2A on cell proliferation and the involved signaling pathway was explored further. RESULTS: RNASEH2A was positively correlated with tumor grade, size, vascular invasion, and poor prognosis. The expression of RNASEH2A mRNA and protein were increased and dependent on hypoxia-inducible factor 2α in HCC tissues and cell lines. Knockout of RNASEH2A in HCC cells greatly reduced cell proliferation and induced the transcription of multiple cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) targeted type 1 interferon-related genes, including IFIT1, USP18, and CXCL10, which suggests knockout of RNASEH2A may produce immunologic stress and tumor suppressive effects. CONCLUSIONS: RNASEH2A plays a critical role and potentially predicts patient outcomes in HCC, which uncovers a new mechanism that RNASEH2A contributes to limit immunologic stress of cancer cells in the context of hypoxia.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas de la Membrana/genética , Nucleotidiltransferasas/genética , Ribonucleasa H/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Quimiocina CXCL10/genética , Femenino , Regulación Neoplásica de la Expresión Génica/inmunología , Técnicas de Inactivación de Genes , Células Hep G2 , Humanos , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Masculino , Pronóstico , Proteínas de Unión al ARN/genética , Transducción de Señal/genética , Hipoxia Tumoral/genética , Microambiente Tumoral/inmunología , Ubiquitina Tiolesterasa/genética
14.
Cancer Biol Med ; 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34623791

RESUMEN

OBJECTIVE: PD-L1 and PD-L2 expression levels determine immune evasion and the therapeutic efficacy of immune checkpoint blockade. The factors that drive inducible PD-L1 expression have been extensively studied, but mechanisms that result in constitutive PD-L1 expression in cancer cells are largely unknown. METHODS: DNA elements were deleted in cells by CRISPR/Cas9-mediated knockout. Protein function was inhibited by chemical inhibitors. Protein levels were examined by Western blot, mRNA levels were examined by real-time RT-PCR, and surface protein expression was determined by cellular immunofluorescence and flow cytometry. Immune evasion was examined by in vitro T cell-mediated killing. RESULTS: We determined the core regions (chr9: 5, 496, 378-5, 499, 663) of a previously identified PD-L1L2-super-enhancer (SE). Through systematic analysis, we found that the E26 transformation-specific (ETS) variant transcription factor (ETV4) bound to this core DNA region but not to DNA surrounding PD-L1L2SE. Genetic knockout of ETV4 dramatically reduced the expressions of both PD-L1 and PD-L2. ETV4 transcription was dependent on ERK activation, and BRAF/TAK1-induced ERK activation was dependent on extracellular signaling from αvß3 integrin, which profoundly affected ETV4 transcription and PD-L1/L2 expression. Genetic silencing or pharmacological inhibition of components of the PD-L1L2-SE-associated pathway rendered cancer cells susceptible to T cell-mediated killing. CONCLUSIONS: We identified a pathway originating from the extracellular matrix that signaled via integrin/BRAF/TAK1/ERK/ETV4 to PD-L1L2-SE to induce PD-L1-mediated immune evasion. These results provided new insights into PD-L1L2-SE activation and pathways associated with immune checkpoint regulation in cancer.

15.
Cell Death Dis ; 12(5): 488, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990547

RESUMEN

Psoriasis is a common chronic skin disease, characterized by abnormal interplay between hyperproliferative epidermal keratinocytes and self-reactive immune cells with not fully addressed molecular mechanism. N4BP1 (NEDD4-binding protein 1) is considered as an immune regulator for a long time but its physiological role is not determined yet. Here, we found that the expression of N4BP1 in skin was highest among all 54 tested tissues, and its expression was further upregulated in psoriatic skin. N4BP1-deficient mice exhibited normal grossly, but developed severe and prolonged IMQ-induced psoriasis-like disease comparing to controls. N4BP1 mainly expressed in keratinocytes and located on nucleus. Up- but not downregulated genes in N4BP1-deficient skin were specifically enriched in keratinocyte proliferation and differentiation. The proliferation of N4BP1-deficient primary keratinocytes was faster compared to that of controls. The upregulated genes upon ablation of N4BP1 were highly enriched in targets of AP-1 transcription factor. Knocking out N4BP1 resulted in upregulation of JunB and FosB, and conversely, overexpression of N4BP1 greatly reduced their expression. Furthermore, N4BP1 binds with JunB and FosB encoding mRNAs and greatly reduces their stability. In addition, with a high expression in neutrophils, N4BP1 limits survival of neutrophils in blood and infiltration of neutrophils in psoriatic skin by targeting CXCL1, CCL20, and S100A8. These findings demonstrate that N4BP1 controls the proper function of keratinocytes and neutrophils by negatively regulating JunB, FosB, and CXCL1, respectively, and that is critical for psoriasis prevention.


Asunto(s)
Proteínas Portadoras/metabolismo , Endorribonucleasas/metabolismo , Queratinocitos/metabolismo , Infiltración Neutrófila/genética , Psoriasis/prevención & control , Animales , Diferenciación Celular , Proliferación Celular/fisiología , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Noqueados
17.
Int J Cancer ; 147(8): 2210-2224, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32573785

RESUMEN

Enhancer can transcribe RNAs, however, most of them were neglected in traditional RNA-seq analysis workflow. Here, we developed a Pipeline for Enhancer Transcription (PET, http://fun-science.club/PET) for quantifying enhancer RNAs (eRNAs) from RNA-seq. By applying this pipeline on lung cancer samples and cell lines, we showed that the transcribed enhancers are enriched with histone marks and transcription factor motifs (JUNB, Hand1-Tcf3 and GATA4). By training a machine learning model, we demonstrate that enhancers can predict prognosis better than their nearby genes. Integrating the Hi-C, ChIP-seq and RNA-seq data, we observe that transcribed enhancers associate with cancer hallmarks or oncogenes, among which LcsMYC-1 (Lung cancer-specific MYC eRNA-1) potentially supports MYC expression. Surprisingly, a significant proportion of transcribed enhancers contain small protein-coding open reading frames (sORFs) and can be translated into microproteins. Our study provides a computational method for eRNA quantification and deepens our understandings of the DNA, RNA and protein nature of enhancers.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Biosíntesis de Proteínas/genética , Transcripción Genética/genética , Células A549 , Línea Celular Tumoral , Genes myc/genética , Células HeLa , Células Hep G2 , Humanos , Células K562 , Células MCF-7 , Sistemas de Lectura Abierta/genética , ARN/genética , Factores de Transcripción/genética
18.
Invest New Drugs ; 38(6): 1707-1716, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32468271

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, and most patients die within one year after diagnosis. This cancer is resistant to almost all current therapies, so there is an urgent need to identify novel druggable targets. Ubiquitin-specific protease 7 (USP7) is a deubiquitinase that functions in carcinogenesis, but its role in PDAC is unknown. Our experiments indicated that several subtypes of PDAC cells are sensitive to USP7 inhibition. In particular, pharmaceutical inhibition of USP7 by the small molecule P22077 attenuated PDAC cell growth and induced cell death in vitro and in vivo. Pharmaceutical inhibition of USP7 in P22077-resistant PDAC cells allowed them to overcome chemoresistance. Genetic silencing experiments supported the importance of USP7 in the pathogenesis of PDAC. In particular, genetic disruption of USP7 greatly reduced cell proliferation and chemoresistance in vitro and prevented PDAC growth in vivo. Protein profiling by mass spectrometry (MS) indicated USP7 was associated 4 ontology terms: translation, localization and protein transporting, nucleotide or ribonucleotide binding, and ubiquitin-dependent catabolic processes. Puromycin labeling indicated that P22077 greatly reduced protein synthesis, and transcriptional analysis indicated that P22077 significantly altered the extracellular space matrix. In summary, we provided multiple lines of evidence which indicate that USP7 plays a critical role in PDAC, and may therefore be a suitable target for treatment of this cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Tiofenos/uso terapéutico , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones Desnudos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Tiofenos/farmacología , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/metabolismo
20.
Cell Signal ; 66: 109470, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31730895

RESUMEN

Pancreatic cancer is one of the most lethal malignant tumors due to a late diagnosis and highly invasion and metastasis. Transforming growth factor-ß (TGF-ß) signaling plays a vital role in the progression of pancreatic cancer. The delicate activity of TGF-ß signaling is particular important for the development of aggression and metastasis which must be fine-tuned. Here, we investigated the role of super-enhancers in regulating the expression of TGF-ß signaling pathway in pancreatic cancer. TGFBR2 owns the modification of H3K27Ac around the gene in pancreatic cancer cells. Inhibition of BRD4 by JQ1 robustly blocked the expression of TGFBR2 in a dose dependent manner. We successfully mapped a super-enhancer in TGFBR2 by sgRNA. Deletion of the super-enhancer in TGFBR2 (sgTGFBR2-SEΔ) significantly reduced the expression of TGFBR2 in pancreatic cancer cells. TGF-ß-induced p-SMAD2/3 was greatly impaired in TGFBR2 super-enhancer deleted cells. Both migration and EMT induced by TGF-ß in pancreatic cancer cells were impaired after deleting the super-enhancer of TGFBR2. Our data suggest a novel molecular mechanism by which a super-enhancer regulates TGFBR2, affecting the activity of TGF-ß as well as its function in pancreatic cancer progression.


Asunto(s)
Neoplasias Pancreáticas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA