Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Aging Neurosci ; 16: 1415994, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903902

RESUMEN

Background: Recent evidence suggests that anosognosia or unawareness of cognitive impairment in Alzheimer's Disease (AD) may be explained by a disconnection between brain regions involved in accessing and monitoring information regarding self and others. It has been demonstrated that AD patients with anosognosia have reduced connectivity within the default mode network (DMN) and that anosognosia in people with prodromal AD is positively associated with bilateral anterior cingulate cortex (ACC), suggesting a possible role of this region in mechanisms of awareness in the early phase of disease. We hypothesized that anosognosia in AD is associated with an imbalance between the activity of large-scale resting-state functional magnetic resonance imaging (fMRI) networks, in particular the DMN, the salience network (SN), and the frontoparietal network (FPN). Methods: Sixty patients with MCI and AD dementia underwent fMRI and neuropsychological assessment including the Anosognosia Questionnaire Dementia (AQ-D), a measure of anosognosia based on a discrepancy score between patient's and carer's judgments. After having applied Independent Component Analysis (ICA) to resting fMRI data we performed: (i) correlations between the AQ-D score and functional connectivity in the DMN, SN, and FPN, and (ii) comparisons between aware and unaware patients of the DMN, SN, and FPN functional connectivity. Results: We found that anosognosia was associated with (i) weak functional connectivity within the DMN, in posterior and middle cingulate cortex particularly, (ii) strong functional connectivity within the SN in ACC, and between the SN and basal ganglia, and (iii) a heterogenous effect concerning the functional connectivity of the FPN, with a weak connectivity between the FPN and PCC, and a strong connectivity between the FPN and ACC. The observed effects were controlled for differences in severity of cognitive impairment and age. Conclusion: Anosognosia in the AD continuum is associated with a dysregulation of the functional connectivity of three large-scale networks, namely the DMN, SN, and FPN.

2.
J Neurol ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38643445

RESUMEN

BACKGROUND: Studies have shown that the prevalence of all-variants Alzheimer's disease (AD) and frontotemporal dementia (FTD) both increase with age, even before the age of 65. However, it is not known whether their different clinical presentations all increase in prevalence with age in the same way. METHODS: We studied the prevalence of the different clinical presentations of young-onset AD and FTD by 5-year age groups in a population-based study identifying all dementia patients with a diagnosis of AD and FTD and symptoms onset before age 65 in the Modena province, Italy. By using regression models of cumulative occurrences, we also estimated age-specific prevalence and compared the growth curves of the clinical presentations. RESULTS: The prevalence of all-variants AD increased with age, from 18/1,000,000 in the 40-44 age group to 1411/1,000,000 in the 60-64 age group. The prevalence of all-variants FTD also increased with age, from 18/1,000,000 to 866/1,000,000. An estimation of age-specific prevalence functions of each clinical presentation showed that atypical non-amnestic AD and aphasic FTD grew the most in early ages, followed by the behavioural variant of FTD (bvFTD). Then, around the age of 60, amnestic AD took over and its age-specific prevalence continued to increase disproportionally compared to all the other clinical variants of AD and FTD, which, instead, started to decrease in prevalence. CONCLUSIONS: Amnestic AD is the clinical presentation that increases the most with advancing age, followed by bvFTD, suggesting that there is a differential vulnerability to the effect of ageing within the same neurodegenerative disease.

3.
Front Psychol ; 14: 1055054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910761

RESUMEN

Stimuli with negative emotional valence are especially apt to influence perception and action because of their crucial role in survival, a property that may not be precisely mirrored by positive emotional stimuli of equal intensity. The aim of this study was to identify the neural circuits differentially coding for positive and negative valence in the implicit processing of facial expressions and words, which are among the main ways human beings use to express emotions. Thirty-six healthy subjects took part in an event-related fMRI experiment. We used an implicit emotional processing task with the visual presentation of negative, positive, and neutral faces and words, as primary stimuli. Dynamic Causal Modeling (DCM) of the fMRI data was used to test effective brain connectivity within two different anatomo-functional models, for the processing of words and faces, respectively. In our models, the only areas showing a significant differential response to negative and positive valence across both face and word stimuli were early visual cortices, with faces eliciting stronger activations. For faces, DCM revealed that this effect was mediated by a facilitation of activity in the amygdala by positive faces and in the fusiform face area by negative faces; for words, the effect was mainly imputable to a facilitation of activity in the primary visual cortex by positive words. These findings support a role of early sensory cortices in discriminating the emotional valence of both faces and words, where the effect may be mediated chiefly by the subcortical/limbic visual route for faces, and rely more on the direct thalamic pathway to primary visual cortex for words.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA