Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Struct Biol ; 216(1): 108061, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38185342

RESUMEN

The low sensitivity of nuclear magnetic resonance (NMR) is a major bottleneck for studying biomolecular structures of complex biomolecular assemblies. Cryogenically cooled probe technology overcomes the sensitivity limitations enabling NMR applications to challenging biomolecular systems. Here we describe solid-state NMR studies of the human blood protein vitronectin (Vn) bound to hydroxyapatite (HAP), the mineralized form of calcium phosphate, using a CryoProbe designed for magic angle spinning (MAS) experiments. Vn is a major blood protein that regulates many different physiological and pathological processes. The high sensitivity of the CryoProbe enabled us to acquire three-dimensional solid-state NMR spectra for sequential assignment and characterization of site-specific water-protein interactions that provide initial insights into the organization of the Vn-HAP complex. Vn associates with HAP in various pathological settings, including macular degeneration eyes and Alzheimer's disease brains. The ability to probe these assemblies at atomic detail paves the way for understanding their formation.


Asunto(s)
Durapatita , Vitronectina , Humanos , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular/métodos
2.
Biochemistry ; 62(15): 2252-2256, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37459255

RESUMEN

Elucidating the structure and interactions of proteins in native environments is a fundamental goal of structural biology. Nuclear magnetic resonance (NMR) spectroscopy is well suited for this task but often suffers from low sensitivity, especially in complex biological settings. Here, we use a sensitivity-enhancement technique called dynamic nuclear polarization (DNP) to overcome this challenge. We apply DNP to capture the membrane interactions of the outer membrane protein Ail, a key component of the host invasion pathway of Yersinia pestis. We show that the DNP-enhanced NMR spectra of Ail in native bacterial cell envelopes are well resolved and enriched in correlations that are invisible in conventional solid-state NMR experiments. Furthermore, we demonstrate the ability of DNP to capture elusive interactions between the protein and the surrounding lipopolysaccharide layer. Our results support a model where the extracellular loop arginine residues remodel the membrane environment, a process that is crucial for host invasion and pathogenesis.


Asunto(s)
Pared Celular , Proteínas de la Membrana , Membrana Celular , Espectroscopía de Resonancia Magnética/métodos , Proteínas de la Membrana/química , Lípidos , Resonancia Magnética Nuclear Biomolecular/métodos
3.
bioRxiv ; 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37292594

RESUMEN

Elucidating the structure and interactions of proteins in native environments has become a fundamental goal of structural biology. Nuclear magnetic resonance (NMR) spectroscopy is well suited for this task but often suffers from low sensitivity, especially in complex biological settings. Here, we use a sensitivity-enhancement technique called dynamic nuclear polarization (DNP) to overcome this challenge. We apply DNP to capture the membrane interactions of the outer membrane protein Ail, a key component of the host invasion pathway of Yersinia pestis . We show that the DNP-enhanced NMR spectra of Ail in native bacterial cell envelopes are well resolved and enriched in correlations that are invisible in conventional solid-state NMR experiments. Furthermore, we demonstrate the ability of DNP to capture elusive interactions between the protein and the surrounding lipopolysaccharide layer. Our results support a model where the extracellular loop arginine residues remodel the membrane environment, a process that is crucial for host invasion and pathogenesis.

4.
Biophys J ; 121(20): 3896-3906, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36056555

RESUMEN

The adaptability of proteins to their work environments is fundamental for cellular life. Here, we describe how the hemopexin-like domain of the multifunctional blood glycoprotein vitronectin binds Ca2+ to adapt to excursions of temperature and shear stress. Using X-ray crystallography, molecular dynamics simulations, NMR, and differential scanning fluorimetry, we describe how Ca2+ and its flexible hydration shell enable the protein to perform conformational changes that relay beyond the calcium-binding site and alter the number of polar contacts to enhance conformational stability. By means of mutagenesis, we identify key residues that cooperate with Ca2+ to promote protein stability, and we show that calcium association confers protection against shear stress, a property that is advantageous for proteins that circulate in the vasculature, like vitronectin.


Asunto(s)
Calcio , Vitronectina , Calcio/metabolismo , Vitronectina/química , Vitronectina/metabolismo , Unión Proteica , Hemopexina/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Conformación Proteica
5.
Nat Commun ; 13(1): 2255, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35474308

RESUMEN

Iron is essential for growth of Mycobacterium tuberculosis, the causative agent of tuberculosis. To acquire iron from the host, M. tuberculosis uses the siderophores called mycobactins and carboxymycobactins. Here, we show that the rv0455c gene is essential for M. tuberculosis to grow in low-iron medium and that secretion of both mycobactins and carboxymycobactins is drastically reduced in the rv0455c deletion mutant. Both water-soluble and membrane-anchored Rv0455c are functional in siderophore secretion, supporting an intracellular role. Lack of Rv0455c results in siderophore toxicity, a phenotype observed for other siderophore secretion mutants, and severely impairs replication of M. tuberculosis in mice, demonstrating the importance of Rv0455c and siderophore secretion during disease. The crystal structure of a Rv0455c homolog reveals a novel protein fold consisting of a helical bundle with a 'cinch' formed by an essential intramolecular disulfide bond. These findings advance our understanding of the distinct M. tuberculosis siderophore secretion system.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Hierro/metabolismo , Ratones , Mycobacterium tuberculosis/metabolismo , Sideróforos/metabolismo , Tuberculosis/microbiología , Virulencia
6.
Exp Cell Res ; 409(2): 112930, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34800542

RESUMEN

Plekha7 (Pleckstrin homology [PH] domain containing, family A member 7) regulates the assembly of proteins of the cytoplasmic apical zonula adherens junction (AJ), thus ensuring cell-cell adhesion and tight-junction barrier integrity. Little is known of Plekha7 function in cancer. In colorectal cancer (CRC) Plekha7 expression is elevated compared to adjacent normal tissue levels, increasing with clinical stage. Plekha7 was present at plasma membrane AJ with wild-type KRas (wt-KRas) but was dispersed in cells expressing mutant KRas (mut-KRas). Fluorescence lifetime imaging microscopy (FLIM) indicated a direct Plekha7 interaction with wt-KRas but scantily with mut-KRas. Inhibiting Plekha7 specifically decreased mut-KRas cell signaling, proliferation, attachment, migration, and retarded mut-KRAS CRC tumor growth. Binding of diC8-phosphoinositides (PI) to the PH domain of Plekha7 was relatively low affinity. This may be because a D175 amino acid residue plays a "sentry" role preventing PI(3,4)P2 and PI(3,4,5)P3 binding. Molecular or pharmacological inhibition of the Plekha7 PH domain prevented the growth of mut-KRas but not wt-KRas cells. Taken together the studies suggest that Plekha7, in addition to maintaining AJ structure plays a role in mut-KRas signaling and phenotype through interaction of its PH domain with membrane mut-KRas, but not wt-KRas, to increase the efficiency of mut-KRas downstream signaling.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas Portadoras/metabolismo , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Apoptosis , Biomarcadores de Tumor/genética , Proteínas Portadoras/genética , Adhesión Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Uniones Intercelulares , Transducción de Señal , Uniones Estrechas , Células Tumorales Cultivadas
7.
Structure ; 29(9): 1029-1039.e3, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33878292

RESUMEN

PLEKHA7 (pleckstrin homology domain containing family A member 7) plays key roles in intracellular signaling, cytoskeletal organization, and cell adhesion, and is associated with multiple human cancers. The interactions of its pleckstrin homology (PH) domain with membrane phosphatidyl-inositol-phosphate (PIP) lipids are critical for proper cellular localization and function, but little is known about how PLEKHA7 and other PH domains interact with membrane-embedded PIPs. Here we describe the structural basis for recognition of membrane-bound PIPs by PLEHA7. Using X-ray crystallography, nuclear magnetic resonance, molecular dynamics simulations, and isothermal titration calorimetry, we show that the interaction of PLEKHA7 with PIPs is multivalent, distinct from a discrete one-to-one interaction, and induces PIP clustering. Our findings reveal a central role of the membrane assembly in mediating protein-PIP association and provide a roadmap for understanding how the PH domain contributes to the signaling, adhesion, and nanoclustering functions of PLEKHA7.


Asunto(s)
Proteínas Portadoras/química , Sitios de Unión , Proteínas Portadoras/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Unión Proteica
8.
Biophys J ; 120(3): 453-462, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33359463

RESUMEN

Understanding microbe-host interactions at the molecular level is a major goal of fundamental biology and therapeutic drug development. Structural biology strives to capture biomolecular structures in action, but the samples are often highly simplified versions of the complex native environment. Here, we present an Escherichia coli model system that allows us to probe the structure and function of Ail, the major surface protein of the deadly pathogen Yersinia pestis. We show that cell surface expression of Ail produces Y. pestis virulence phenotypes in E. coli, including resistance to human serum, cosedimentation of human vitronectin, and pellicle formation. Moreover, isolated bacterial cell envelopes, encompassing inner and outer membranes, yield high-resolution solid-state NMR spectra that reflect the structure of Ail and reveal Ail sites that are sensitive to the bacterial membrane environment and involved in the interactions with human serum components. The data capture the structure and function of Ail in a bacterial outer membrane and set the stage for probing its interactions with the complex milieu of immune response proteins present in human serum.


Asunto(s)
Yersinia pestis , Proteínas de la Membrana Bacteriana Externa , Escherichia coli , Humanos , Virulencia , Factores de Virulencia
9.
Biophys J ; 119(7): 1324-1334, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32888404

RESUMEN

Bcl-xL is a major inhibitor of apoptosis, a fundamental homeostatic process of programmed cell death that is highly conserved across evolution. Because it plays prominent roles in cancer, Bcl-xL is a major target for anticancer therapy and for studies aimed at understanding its structure and activity. Although Bcl-xL is active primarily at intracellular membranes, most studies have focused on soluble forms of the protein lacking both the membrane-anchoring C-terminal tail and the intrinsically disordered loop, and this has resulted in a fragmented view of the protein's biological activity. Here, we describe the conformation of full-length Bcl-xL. Using NMR spectroscopy, molecular dynamics simulations, and isothermal titration calorimetry, we show how the three structural elements affect the protein's structure, dynamics, and ligand-binding activity in both its soluble and membrane-anchored states. The combined data provide information about the molecular basis for the protein's functionality and a view of its complex molecular mechanisms.


Asunto(s)
Apoptosis , Simulación de Dinámica Molecular , Espectroscopía de Resonancia Magnética , Conformación Proteica , Proteína bcl-X
10.
Proc Natl Acad Sci U S A ; 117(31): 18504-18510, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32699145

RESUMEN

The human blood protein vitronectin (Vn) is a major component of the abnormal deposits associated with age-related macular degeneration, Alzheimer's disease, and many other age-related disorders. Its accumulation with lipids and hydroxyapatite (HAP) has been demonstrated, but the precise mechanism for deposit formation remains unknown. Using a combination of solution and solid-state NMR experiments, cosedimentation assays, differential scanning fluorimetry (DSF), and binding energy calculations, we demonstrate that Vn is capable of binding both soluble ionic calcium and crystalline HAP, with high affinity and chemical specificity. Calcium ions bind preferentially at an external site, at the top of the hemopexin-like (HX) domain, with a group of four Asp carboxylate groups. The same external site is also implicated in HAP binding. Moreover, Vn acquires thermal stability upon association with either calcium ions or crystalline HAP. The data point to a mechanism whereby Vn plays an active role in orchestrating calcified deposit formation. They provide a platform for understanding the pathogenesis of macular degeneration and other related degenerative disorders, and the normal functions of Vn, especially those related to bone resorption.


Asunto(s)
Calcio/metabolismo , Durapatita/metabolismo , Degeneración Macular/metabolismo , Vitronectina/metabolismo , Sitios de Unión , Calcio/química , Durapatita/química , Humanos , Unión Proteica , Vitronectina/química
11.
Biochim Biophys Acta Biomembr ; 1862(9): 183333, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32371072

RESUMEN

Well-hydrated phospholipid bilayers provide a near-native environment for membrane proteins. They enable the preparation of chemically-defined samples suitable for NMR and other spectroscopic experiments that reveal the structure, dynamics, and functional interactions of the proteins at atomic resolution. The synthetic polymer styrene maleic acid (SMA) can be used to prepare detergent-free samples that form macrodiscs with diameters greater than 30 nm at room temperature, and spontaneously align in the magnetic field of an NMR spectrometer at temperatures above 35 °C. Here we show that magnetically aligned macrodiscs are particularly well suited for solid-state NMR experiments of membrane proteins because the SMA-lipid assembly both immobilizes the embedded protein and provides uniaxial order for oriented sample (OS) solid-state NMR studies. We show that aligned macrodiscs incorporating four different membrane proteins with a wide range of sizes and topological complexity yield high-resolution OS solid-state NMR spectra. The work is dedicated to Michelle Auger who made key contributions to the field of membrane and membrane protein biophysics.


Asunto(s)
Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Fosfolípidos/química , Polímeros/química , Humanos , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/genética , Fosfolípidos/genética , Temperatura
12.
Mol Microbiol ; 114(3): 510-520, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32462782

RESUMEN

The outer membrane is a key virulence determinant of gram-negative bacteria. In Yersinia pestis, the deadly agent that causes plague, the protein Ail and lipopolysaccharide (LPS)6 enhance lethality by promoting resistance to human innate immunity and antibiotics, enabling bacteria to proliferate in the human host. Their functions are highly coordinated. Here we describe how they cooperate to promote pathogenesis. Using a multidisciplinary approach, we identify mutually constructive interactions between Ail and LPS that produce an extended conformation of Ail at the membrane surface, cause thickening and rigidification of the LPS membrane, and collectively promote Y. pestis survival in human serum, antibiotic resistance, and cell envelope integrity. The results highlight the importance of the Ail-LPS assembly as an organized whole, rather than its individual components, and provide a handle for targeting Y. pestis pathogenesis.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Lipopolisacáridos/inmunología , Lipopolisacáridos/metabolismo , Factores de Virulencia/inmunología , Factores de Virulencia/metabolismo , Yersinia pestis/inmunología , Yersinia pestis/metabolismo , Secuencias de Aminoácidos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Humanos , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Mutación , Peste/inmunología , Peste/microbiología , Unión Proteica , Conformación Proteica , Yersinia pestis/efectos de los fármacos
13.
Sci Adv ; 5(9): eaax5068, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31535027

RESUMEN

Vitronectin (Vn) is a major component of blood that controls many processes central to human biology. It is a drug target and a key factor in cell and tissue engineering applications, but despite long-standing efforts, little is known about the molecular basis for its functions. Here, we define the domain organization of Vn, report the crystal structure of its carboxyl-terminal domain, and show that it harbors the binding site for the Yersinia pestis outer membrane protein Ail, which recruits Vn to the bacterial cell surface to evade human host defenses. Vn forms a single four-bladed ß/α-propeller that serves as a hub for multiple functions. The structure explains key features of native Vn and provides a blueprint for understanding and targeting this essential human protein.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Factores de Virulencia/metabolismo , Vitronectina/metabolismo , Yersinia pestis/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Unión Proteica , Conformación Proteica , Homología de Secuencia , Factores de Virulencia/química , Vitronectina/química
14.
Methods Mol Biol ; 1877: 233-246, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30536010

RESUMEN

The BCL-2 family proteins are key regulators of programmed cell death or apoptosis, and represent important targets for the development of anticancer drugs. Because their functions are intimately connected with intracellular membranes, it is important to perform structural and activity studies in precisely characterized samples that include phospholipids and capture the features of the native physiological environment as closely as possible. NMR studies and activity assays based on lipid bilayer nanodiscs are ideally suited for this purpose: they enable the conformations and interactions of these proteins to be probed at atomic resolution in their membrane-associated states. Here we describe detailed protocols for generating the protein components and the reconstituted nanodisc samples suitable for NMR studies and functional assays. The protocols focus on the BCL-2 family protein BCL-XL, a dominant inhibitor of programmed cell death and a major anticancer drug target. The protocols are relatively straightforward. Provided care is taken to ensure protein integrity and sample homogeneity, BCL-XL can be readily reconstituted in nanodiscs, with its hydrophobic C-terminal tail anchored through the nanodisc lipid bilayer, and its folded N-terminal head and ligand binding pocket exposed to the aqueous solution. We anticipate that BCL-2 samples prepared with these protocols will advance structural and mechanistic studies for this important protein family.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Secuencia de Aminoácidos , Antineoplásicos , Muerte Celular/fisiología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/metabolismo , Nanoestructuras , Fosfolípidos/metabolismo , Proteína bcl-X/metabolismo
15.
Biophys J ; 115(3): 533-542, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30017071

RESUMEN

The interactions of Bcl-2 family proteins with intracellular lipids are essential for the regulation of apoptosis, a mechanism of programmed cell death that is central to the health and development of multicellular organisms. Bid and its caspase-8 cleavage product, tBid, promote the permeabilization of the mitochondrial outer membrane and sequester antiapoptotic Bcl-2 proteins to counter their cytoprotective activity. Bid and tBid also promote lipid exchange, a characteristic trait of apoptosis. Here, we show that tBid is capable of associating with phospholipids to form soluble, nanometer-sized lipoprotein particles that retain binding affinity for the antiapoptotic protein Bcl-xL. The tBid lipoprotein particles form with a lipid/protein stoichiometry in the range of 20/1 and have a diameter of ∼11.5 nm. Lipoparticle-bound tBid retains an α-helical structure and binds Bcl-xL through its third Bcl-2 homology motif, forming a soluble, lipid-associated heteroprotein complex. The results shed light on the role of lipids in mediating Bcl-2 protein mobility and interactions.


Asunto(s)
Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Lipoproteínas/metabolismo , Eliminación de Secuencia , Secuencia de Aminoácidos , Apoptosis , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/química , Lipoproteínas/química , Permeabilidad , Unión Proteica , Conformación Proteica en Hélice alfa , Solubilidad
16.
Nat Chem Biol ; 14(5): 458-465, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29507390

RESUMEN

Intrinsically disordered regions (IDRs) of proteins often regulate function upon post-translational modification (PTM) through interactions with folded domains. An IDR linking two α-helices (α1-α2) of the antiapoptotic protein Bcl-xL experiences several PTMs that reduce antiapoptotic activity. Here, we report that PTMs within the α1-α2 IDR promote its interaction with the folded core of Bcl-xL that inhibits the proapoptotic activity of two types of regulatory targets, BH3-only proteins and p53. This autoregulation utilizes an allosteric pathway whereby, in one direction, the IDR induces a direct displacement of p53 from Bcl-xL coupled to allosteric displacement of simultaneously bound BH3-only partners. This pathway operates in the opposite direction when the BH3-only protein PUMA binds to the BH3 binding groove of Bcl-xL, directly displacing other bound BH3-only proteins, and allosterically remodels the distal site, displacing p53. Our findings show how an IDR enhances functional versatility through PTM-dependent allosteric regulation of a folded protein domain.


Asunto(s)
Apoptosis , Regulación de la Expresión Génica , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína bcl-X/metabolismo , Sitio Alostérico , Sitios de Unión , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Cinética , Mutación , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Transducción de Señal , Proteína bcl-X/genética
17.
J Biomol NMR ; 69(3): 111-121, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29143165

RESUMEN

The structure of monomeric human chemokine IL-8 (residues 1-66) was determined in aqueous solution by NMR spectroscopy. The structure of the monomer is similar to that of each subunit in the dimeric full-length protein (residues 1-72), with the main differences being the location of the N-loop (residues 10-22) relative to the C-terminal α-helix and the position of the side chain of phenylalanine 65 near the truncated dimerization interface (residues 67-72). NMR was used to analyze the interactions of monomeric IL-8 (1-66) with ND-CXCR1 (residues 1-38), a soluble polypeptide corresponding to the N-terminal portion of the ligand binding site (Binding Site-I) of the chemokine receptor CXCR1 in aqueous solution, and with 1TM-CXCR1 (residues 1-72), a membrane-associated polypeptide that includes the same N-terminal portion of the binding site, the first trans-membrane helix, and the first intracellular loop of the receptor in nanodiscs. The presence of neither the first transmembrane helix of the receptor nor the lipid bilayer significantly affected the interactions of IL-8 with Binding Site-I of CXCR1.


Asunto(s)
Interleucina-8/química , Receptores de Interleucina-8A/metabolismo , Sitios de Unión , Humanos , Interleucina-8/metabolismo , Membrana Dobles de Lípidos , Resonancia Magnética Nuclear Biomolecular , Unión Proteica
18.
J Phys Chem B ; 121(32): 7561-7570, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28726410

RESUMEN

Yersinia pestis the causative agent of plague, is highly pathogenic and poses very high risk to public health. The outer membrane protein Ail (Adhesion invasion locus) is one of the most highly expressed proteins on the cell surface of Y. pestis, and a major target for the development of medical countermeasures. Ail is essential for microbial virulence and is critical for promoting the survival of Y. pestis in serum. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but the protein's activity is influenced by the detergents in these samples, underscoring the importance of the surrounding environment for structure-activity studies. Here we describe the backbone structure of Ail, determined in lipid bilayer nanodiscs, using solution NMR spectroscopy. We also present solid-state NMR data obtained for Ail in membranes containing lipopolysaccharide (LPS), a major component of the bacterial outer membranes. The protein in lipid bilayers, adopts the same eight-stranded ß-barrel fold observed in the crystalline and micellar states. The membrane composition, however, appears to have a marked effect on protein dynamics, with LPS enhancing conformational order and slowing down the 15N transverse relaxation rate. The results provide information about the way in which an outer membrane protein inserts and functions in the bacterial membrane.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Membrana Dobles de Lípidos/química , Factores de Virulencia/química , Yersinia pestis/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Rastreo Diferencial de Calorimetría , Membrana Dobles de Lípidos/metabolismo , Nanoestructuras/química , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Factores de Virulencia/metabolismo , Difracción de Rayos X
19.
Arch Biochem Biophys ; 628: 92-101, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28529197

RESUMEN

Membrane proteins present a challenge for structural biology. In this article, we review some of the recent developments that advance the application of NMR to membrane proteins, with emphasis on structural studies in detergent-free, lipid bilayer samples that resemble the native environment. NMR spectroscopy is not only ideally suited for structure determination of membrane proteins in hydrated lipid bilayer membranes, but also highly complementary to the other principal techniques based on X-ray and electron diffraction. Recent advances in NMR instrumentation, spectroscopic methods, computational methods, and sample preparations are driving exciting new efforts in membrane protein structural biology.


Asunto(s)
Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular/métodos , Detergentes/química , Humanos , Membrana Dobles de Lípidos/química , Nanoestructuras/química
20.
J Biomol NMR ; 67(3): 179-190, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28239773

RESUMEN

The outer membrane protein Ail (Adhesion invasion locus) is one of the most abundant proteins on the cell surface of Yersinia pestis during human infection. Its functions are expressed through interactions with a variety of human host proteins, and are essential for microbial virulence. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but those samples contained detergents that interfere with functionality, thus, precluding analysis of the structural basis for Ail's biological activity. Here, we demonstrate that high-resolution solid-state NMR spectra can be obtained from samples of Ail in detergent-free phospholipid liposomes, prepared with a lipid to protein molar ratio of 100. The spectra, obtained with 13C or 1H detection, have very narrow line widths (0.40-0.60 ppm for 13C, 0.11-0.15 ppm for 1H, and 0.46-0.64 ppm for 15N) that are consistent with a high level of sample homogeneity. The spectra enable resonance assignments to be obtained for N, CO, CA and CB atomic sites from 75 out of 156 residues in the sequence of Ail, including 80% of the transmembrane region. The 1H-detected solid-state NMR 1H/15N correlation spectra obtained for Ail in liposomes compare very favorably with the solution NMR 1H/15N TROSY spectra obtained for Ail in nanodiscs prepared with a similar lipid to protein molar ratio. These results set the stage for studies of the molecular basis of the functional interactions of Ail with its protein partners from human host cells, as well as the development of drugs targeting Ail.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Espectroscopía de Resonancia Magnética , Lípidos de la Membrana/química , Factores de Virulencia/química , Rastreo Diferencial de Calorimetría , Espectroscopía de Resonancia Magnética con Carbono-13 , Espectroscopía de Resonancia Magnética/métodos , Resonancia Magnética Nuclear Biomolecular , Espectroscopía de Protones por Resonancia Magnética , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA