Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur J Med Chem ; 258: 115587, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37406382

RESUMEN

Protein-protein interactions (PPIs) constitute an important but challenging class of molecular targets for small molecules. The PEX5-PEX14 PPI has been shown to play a critical role in glycosome biogenesis and its disruption impairs the metabolism in Trpanosoma parasites, eventually leading to their death. Therefore, this PPI is a potential molecular target for new drugs against diseases caused by Trypanosoma infections. Here, we report a new class of peptidomimetic scaffolds to target the PEX5-PEX14 PPI. The molecular design was based on an oxopiperazine template for the α-helical mimetics. A structural simplification along with modifications of the central oxopiperazine scaffold and addressing the lipophilic interactions led to the development of peptidomimetics that inhibit PEX5-TbPEX14 PPI and display cellular activity against T. b. brucei. This approach provides an alternative approach towards the development of trypanocidal agents and may be generally useful for the design of helical mimetics as PPI inhibitors.


Asunto(s)
Proteínas de la Membrana , Proteínas de la Membrana/metabolismo
2.
Eur J Med Chem ; 243: 114778, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36194937

RESUMEN

Trypanosomiases are neglected tropical diseases caused by Trypanosoma (sub)species. Available treatments are limited and have considerable adverse effects and questionable efficacy in the chronic stage of the disease, urgently calling for the identification of new targets and drug candidates. Recently, we have shown that impairment of glycosomal protein import by the inhibition of the PEX5-PEX14 protein-protein interaction (PPI) is lethal to Trypanosoma. Here, we report the development of a novel dibenzo[b,f][1,4]oxazepin-11(10H)-one scaffold for small molecule inhibitors of PEX5-PEX14 PPI. The initial hit was identified by a high throughput screening (HTS) of a library of compounds. A bioisosteric replacement approach allowed to replace the metabolically unstable sulphur atom from the initial dibenzo[b,f][1,4]thiazepin-11(10H)-one HTS hit with oxygen. A crystal structure of the hit compound bound to PEX14 surface facilitated the rational design of the compound series accessible by a straightforward chemistry for the initial structure-activity relationship (SAR) analysis. This guided the design of compounds with trypanocidal activity in cell-based assays providing a promising starting point for the development of new drug candidates to tackle trypanosomiases.


Asunto(s)
Tripanocidas , Trypanosoma brucei brucei , Trypanosoma , Proteínas de la Membrana , Microcuerpos , Transporte de Proteínas/fisiología , Relación Estructura-Actividad , Tripanocidas/farmacología
3.
Bioorg Chem ; 97: 103662, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32086055

RESUMEN

A series of novel 4-butyl-arylpiperazine-3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives were synthesized and evaluated for their 5-HT1A/D2 receptor affinity and serotonin reuptake inhibition. The compounds exhibited high affinity for the 5-HT1A receptor, (especially 4dKi = 0.4 nM) which depended on the substitution pattern at the phenylpiperazine moiety. From this series screen, compound 4c emerged with promising mixed receptor profiles for the 5-HT1A/D2 receptors and the serotonin transporter (Ki = 1.3 nM, 182 nM and 64 nM, respectively).


Asunto(s)
Pirrolidinas/química , Pirrolidinas/farmacología , Receptor de Serotonina 5-HT1A/metabolismo , Receptores de Dopamina D2/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/química , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Células CHO , Cricetulus , Descubrimiento de Drogas , Humanos , Pirrolidinas/síntesis química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/síntesis química
4.
Eur J Med Chem ; 183: 111736, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31586817

RESUMEN

A series of novel 3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives were synthesised and evaluated for their 5-HT1A/D2/5-HT2A/5-HT6/5-HT7 receptor affinity and serotonin reuptake inhibition. Most of the evaluated compounds displayed high affinities for 5-HT1A receptors (e.g., 4cKi = 2.3 nM, 4lKi = 3.2 nM). The antidepressant activity of the selected compounds was screened in vivo using the forced swim test (FST). The results indicate that compound MW005 (agonist of the pre- and postsynaptic 5-HT1A receptor) exhibited promising affinities for the 5-HT1A/SERT/D2/5-HT6/5-HT7 receptors and showed an antidepressant-like activity in the FST model.


Asunto(s)
Antidepresivos , Indoles , Pirrolidinonas , Animales , Antidepresivos/síntesis química , Antidepresivos/farmacología , Células CHO , Cricetulus , Células HEK293 , Humanos , Indoles/síntesis química , Indoles/farmacología , Masculino , Ratones , Pirrolidinonas/síntesis química , Pirrolidinonas/farmacología , Receptores de Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/síntesis química , Inhibidores Selectivos de la Recaptación de Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
5.
Acta Bioeng Biomech ; 17(2): 55-62, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26415712

RESUMEN

PURPOSE: There are two families of fibres taking part in the process of mechanical loads transfer, i.e. elastin and collagen fibres. Their number, spatial arrangement and specific properties determine the capacity of a blood vessels to resist mechanical loads resulting from the impact of blood on vessel walls. The purpose of the present paper is to define the load-bearing capacities of elastin and collagen scaffolds equivalent to natural fibre arrangements of human aorta and produced by selective digestion. METHODS: Samples of thoracic human aortas were digested by using phosphate buffer of trypsin at pH 8.0 for 22 hours in order to degrade elastin and by autoclaving followed by incubation in 90% formic acid for 22 hours. The efficacy of digestion was assessed immunohistochemically. Mechanical properties of pre-stretched native and digested samples were determined by uniaxial tensile test. RESULTS: Samples subjected to autoclaving have been successfully deprived of both types of collagen and elastin has been intact. Treatment with trypsin caused a removal of elastin and the presence of type I and IV collagen was demonstrated. Digestion of aortic samples either by formic acid or trypsin has resulted significantly decreasing mechanical properties in comparison with native samples. CONCLUSIONS: Collagen and elastin scaffold-like stuctures have been effectively produced by selective digestion of thoracic human aorta and their contribution to the load-bearing process was evaluated. Isolated collagen network are more durable and stiffer and less deformable than elastin network, hence are responsible for load-bearing process at higher strain since the range of working of elastin is at lower strain values.


Asunto(s)
Aorta Torácica/fisiología , Colágeno/fisiología , Elastina/fisiología , Mecanotransducción Celular/fisiología , Modelos Cardiovasculares , Soporte de Peso/fisiología , Adulto , Fuerza Compresiva/fisiología , Simulación por Computador , Módulo de Elasticidad/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estrés Mecánico , Resistencia a la Tracción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA