Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Rep ; 24(10): 2614-2628.e4, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30184497

RESUMEN

Multiple pathways regulate the repair of double-strand breaks (DSBs) to suppress potentially dangerous ectopic recombination. Both sequence and chromatin context are thought to influence pathway choice between non-homologous end-joining (NHEJ) and homology-driven recombination. To test the effect of repetitive sequences on break processing, we have inserted TG-rich repeats on one side of an inducible DSB at the budding yeast MAT locus on chromosome III. Five clustered Rap1 sites within a break-proximal TG repeat are sufficient to block Mre11-Rad50-Xrs2 recruitment, impair resection, and favor elongation by telomerase. The two sides of the break lose end-to-end tethering and show enhanced, uncoordinated movement. Only the TG-free side is resected and shifts to the nuclear periphery. In contrast to persistent DSBs without TG repeats that are repaired by imprecise NHEJ, nearly all survivors of repeat-proximal DSBs repair the break by a homology-driven, non-reciprocal translocation from ChrIII-R to ChrVII-L. This suppression of imprecise NHEJ at TG-repeat-flanked DSBs requires the Uls1 translocase activity.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Telómero/metabolismo , Translocación Genética/fisiología , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN por Unión de Extremidades/fisiología , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/genética , Translocación Genética/genética
2.
J Bacteriol ; 199(2)2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27795329

RESUMEN

SecA is an essential component of the Sec machinery in bacteria, which is responsible for transporting proteins across the cytoplasmic membrane. Recent work from our laboratory indicates that SecA binds to ribosomes. Here, we used two different approaches to demonstrate that SecA also interacts with nascent polypeptides in vivo and that these polypeptides are Sec substrates. First, we photo-cross-linked SecA to ribosomes in vivo and identified mRNAs that copurify with SecA. Microarray analysis of the copurifying mRNAs indicated a strong enrichment for proteins containing Sec-targeting sequences. Second, we used a 2-dimensional (2-D) gel approach to analyze radioactively labeled nascent polypeptides that copurify with SecA, including maltose binding protein, a well-characterized SecA substrate. The interaction of SecA with nascent chains was not strongly affected in cells lacking SecB or trigger factor, both of which also interact with nascent Sec substrates. Indeed, the ability of SecB to interact with nascent chains was disrupted in strains in which the interaction between SecA and the ribosome was defective. Analysis of the interaction of SecA with purified ribosomes containing arrested nascent chains in vitro indicates that SecA can begin to interact with a variety of nascent chains when they reach a length of ∼110 amino acids, which is considerably shorter than the length required for interaction with SecB. Our results suggest that SecA cotranslationally recognizes nascent Sec substrates and that this recognition could be required for the efficient delivery of these proteins to the membrane-embedded Sec machinery. IMPORTANCE: SecA is an ATPase that provides the energy for the translocation of proteins across the cytoplasmic membrane by the Sec machinery in bacteria. The translocation of most of these proteins is uncoupled from protein synthesis and is frequently described as "posttranslational." Here, we show that SecA interacts with nascent Sec substrates. This interaction is not dependent on SecB or trigger factor, which also interact with nascent Sec substrates. Moreover, the interaction of SecB with nascent polypeptides is dependent on the interaction of SecA with the ribosome, suggesting that interaction of the nascent chain with SecA precedes interaction with SecB. Our results suggest that SecA could recognize substrate proteins cotranslationally in order to efficiently target them for uncoupled protein translocation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli , Regulación Bacteriana de la Expresión Génica/fisiología , Canales de Translocación SEC/metabolismo , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Canales de Translocación SEC/genética , Proteína SecA
3.
Genes Dev ; 30(8): 931-45, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27056668

RESUMEN

High-resolution imaging shows that persistent DNA damage in budding yeast localizes in distinct perinuclear foci for repair. The signals that trigger DNA double-strand break (DSB) relocation or determine their destination are unknown. We show here that DSB relocation to the nuclear envelope depends on SUMOylation mediated by the E3 ligases Siz2 and Mms21. In G1, a polySUMOylation signal deposited coordinately by Mms21 and Siz2 recruits the SUMO targeted ubiquitin ligase Slx5/Slx8 to persistent breaks. Both Slx5 and Slx8 are necessary for damage relocation to nuclear pores. When targeted to an undamaged locus, however, Slx5 alone can mediate relocation in G1-phase cells, bypassing the requirement for polySUMOylation. In contrast, in S-phase cells, monoSUMOylation mediated by the Rtt107-stabilized SMC5/6-Mms21 E3 complex drives DSBs to the SUN domain protein Mps3 in a manner independent of Slx5. Slx5/Slx8 and binding to pores favor repair by ectopic break-induced replication and imprecise end-joining.


Asunto(s)
Roturas del ADN de Doble Cadena , Poro Nuclear/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sumoilación , Mutación , Membrana Nuclear/metabolismo , Unión Proteica , Fase S/fisiología , Saccharomyces cerevisiae/citología , Ubiquitina-Proteína Ligasas/metabolismo
4.
DNA Repair (Amst) ; 32: 134-140, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26004856

RESUMEN

Many proteins ligands are shared between double-strand breaks and natural chromosomal ends or telomeres. The structural similarity of the 3' overhang, and the efficiency of cellular DNA end degradation machineries, highlight the need for mechanisms that resect selectively to promote or restrict recombination events. Here we examine the means used by eukaryotic cells to suppress resection at telomeres, target telomerase to short telomeres, and process broken ends for appropriate repair. Not only molecular ligands, but the spatial sequestration of telomeres and damage likely ensure that these two very similar structures have very distinct outcomes with respect to the DNA damage response and repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN/química , Telomerasa/genética , Telómero/química , Animales , Núcleo Celular/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Células Eucariotas/citología , Células Eucariotas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Regulación de la Expresión Génica , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/metabolismo , Telómero/metabolismo
5.
Mol Cell ; 55(4): 626-39, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25066231

RESUMEN

Persistent DNA double-strand breaks (DSBs) are recruited to the nuclear periphery in budding yeast. Both the Nup84 pore subcomplex and Mps3, an inner nuclear membrane (INM) SUN domain protein, have been implicated in DSB binding. It was unclear what, if anything, distinguishes the two potential sites of repair. Here, we characterize and distinguish the two binding sites. First, DSB-pore interaction occurs independently of cell-cycle phase and requires neither the chromatin remodeler INO80 nor recombinase Rad51 activity. In contrast, Mps3 binding is S and G2 phase specific and requires both factors. SWR1-dependent incorporation of Htz1 (H2A.Z) is necessary for break relocation to either site in both G1- and S-phase cells. Importantly, functional assays indicate that mutations in the two sites have additive repair defects, arguing that the two perinuclear anchorage sites define distinct survival pathways.


Asunto(s)
Sitios de Unión/genética , Ensamble y Desensamble de Cromatina/fisiología , ADN de Hongos/genética , Proteínas Fúngicas/fisiología , Saccharomycetales/genética , Adenosina Trifosfatasas/fisiología , Sitios de Unión/fisiología , Ciclo Celular/genética , Ciclo Celular/fisiología , Ensamble y Desensamble de Cromatina/genética , Roturas del ADN de Doble Cadena , Histonas/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Saccharomycetales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA