Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Neurosci ; 21(6): 881-893, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29713079

RESUMEN

Understanding brain function requires technologies that can control the activity of large populations of neurons with high fidelity in space and time. We developed a multiphoton holographic approach to activate or suppress the activity of ensembles of cortical neurons with cellular resolution and sub-millisecond precision. Since existing opsins were inadequate, we engineered new soma-targeted (ST) optogenetic tools, ST-ChroME and IRES-ST-eGtACR1, optimized for multiphoton activation and suppression. Employing a three-dimensional all-optical read-write interface, we demonstrate the ability to simultaneously photostimulate up to 50 neurons distributed in three dimensions in a 550 × 550 × 100-µm3 volume of brain tissue. This approach allows the synthesis and editing of complex neural activity patterns needed to gain insight into the principles of neural codes.


Asunto(s)
Encéfalo/fisiología , Holografía/métodos , Red Nerviosa/fisiología , Neuronas/fisiología , Estimulación Luminosa/métodos , Animales , Supervivencia Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Fenómenos Electrofisiológicos , Femenino , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Opsinas/farmacología , Optogenética , Técnicas de Placa-Clamp , Embarazo
2.
Nat Commun ; 8(1): 1228, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089483

RESUMEN

Optical methods capable of manipulating neural activity with cellular resolution and millisecond precision in three dimensions will accelerate the pace of neuroscience research. Existing approaches for targeting individual neurons, however, fall short of these requirements. Here we present a new multiphoton photo-excitation method, termed three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT), which allows precise, simultaneous photo-activation of arbitrary sets of neurons anywhere within the addressable volume of a microscope. This technique uses point-cloud holography to place multiple copies of a temporally focused disc matching the dimensions of a neuron's cell body. Experiments in cultured cells, brain slices, and in living mice demonstrate single-neuron spatial resolution even when optically targeting randomly distributed groups of neurons in 3D. This approach opens new avenues for mapping and manipulating neural circuits, allowing a real-time, cellular resolution interface to the brain.


Asunto(s)
Holografía/métodos , Imagenología Tridimensional , Optogenética/métodos , Absorción de Radiación , Animales , Células CHO , Cricetinae , Cricetulus , Femenino , Masculino , Ratones , Neuronas/fisiología , Fotones , Factores de Tiempo
3.
Cell ; 157(5): 1216-29, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24855953

RESUMEN

The nervous system adapts to experience by inducing a transcriptional program that controls important aspects of synaptic plasticity. Although the molecular mechanisms of experience-dependent plasticity are well characterized in excitatory neurons, the mechanisms that regulate this process in inhibitory neurons are only poorly understood. Here, we describe a transcriptional program that is induced by neuronal activity in inhibitory neurons. We find that, while neuronal activity induces expression of early-response transcription factors such as Npas4 in both excitatory and inhibitory neurons, Npas4 activates distinct programs of late-response genes in inhibitory and excitatory neurons. These late-response genes differentially regulate synaptic input to these two types of neurons, promoting inhibition onto excitatory neurons while inducing excitation onto inhibitory neurons. These findings suggest that the functional outcomes of activity-induced transcriptional responses are adapted in a cell-type-specific manner to achieve a circuit-wide homeostatic response.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica , Neuronas/metabolismo , Transcripción Genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Técnicas de Cultivo de Célula , Embrión de Mamíferos/citología , Ratones , Ratones Noqueados , Sinapsis/metabolismo
4.
Neuron ; 74(4): 691-705, 2012 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-22632727

RESUMEN

Microglia are the resident CNS immune cells and active surveyors of the extracellular environment. While past work has focused on the role of these cells during disease, recent imaging studies reveal dynamic interactions between microglia and synaptic elements in the healthy brain. Despite these intriguing observations, the precise function of microglia at remodeling synapses and the mechanisms that underlie microglia-synapse interactions remain elusive. In the current study, we demonstrate a role for microglia in activity-dependent synaptic pruning in the postnatal retinogeniculate system. We show that microglia engulf presynaptic inputs during peak retinogeniculate pruning and that engulfment is dependent upon neural activity and the microglia-specific phagocytic signaling pathway, complement receptor 3(CR3)/C3. Furthermore, disrupting microglia-specific CR3/C3 signaling resulted in sustained deficits in synaptic connectivity. These results define a role for microglia during postnatal development and identify underlying mechanisms by which microglia engulf and remodel developing synapses.


Asunto(s)
Encéfalo/fisiología , Antígeno de Macrófago-1/metabolismo , Microglía/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Antígeno de Macrófago-1/genética , Ratones , Ratones Noqueados , Células Ganglionares de la Retina/fisiología
5.
Neuron ; 73(3): 466-81, 2012 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-22325200

RESUMEN

Neuronal development is characterized by a period of exuberant synaptic growth that is well studied. However, the mechanisms that restrict this process are less clear. Here we demonstrate that glycosylphosphatidylinositol-anchored cell-surface receptors of the Nogo Receptor family (NgR1, NgR2, and NgR3) restrict excitatory synapse formation. Loss of any one of the NgRs results in an increase in synapse number in vitro, whereas loss of all three is necessary for abnormally elevated synaptogenesis in vivo. We show that NgR1 inhibits the formation of new synapses in the postsynaptic neuron by signaling through the coreceptor TROY and RhoA. The NgR family is downregulated by neuronal activity, a response that may limit NgR function and facilitate activity-dependent synapse development. These findings suggest that NgR1, a receptor previously shown to restrict axon growth in the adult, also functions in the dendrite as a barrier that limits excitatory synapse number during brain development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Proteínas de la Mielina/metabolismo , Neuronas/fisiología , Receptores de Superficie Celular/metabolismo , Sinapsis/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Células Cultivadas , Dendritas/genética , Dendritas/ultraestructura , Homólogo 4 de la Proteína Discs Large , Proteínas Ligadas a GPI/deficiencia , Proteínas Ligadas a GPI/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Guanilato-Quinasas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Microscopía Confocal , Microscopía Electrónica de Transmisión , Proteínas de la Mielina/deficiencia , Neuronas/citología , Receptor Nogo 1 , Técnicas de Cultivo de Órganos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Superficie Celular/deficiencia , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/genética , Sinapsis/ultraestructura , Transfección/métodos , Proteína de Unión al GTP rhoA/metabolismo
6.
Cell ; 143(3): 442-55, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-21029865

RESUMEN

The mechanisms that promote excitatory synapse formation and maturation have been extensively studied. However, the molecular events that limit excitatory synapse development so that synapses form at the right time and place and in the correct numbers are less well understood. We have identified a RhoA guanine nucleotide exchange factor, Ephexin5, which negatively regulates excitatory synapse development until EphrinB binding to the EphB receptor tyrosine kinase triggers Ephexin5 phosphorylation, ubiquitination, and degradation. The degradation of Ephexin5 promotes EphB-dependent excitatory synapse development and is mediated by Ube3A, a ubiquitin ligase that is mutated in the human cognitive disorder Angelman syndrome and duplicated in some forms of Autism Spectrum Disorders (ASDs). These findings suggest that aberrant EphB/Ephexin5 signaling during the development of synapses may contribute to the abnormal cognitive function that occurs in Angelman syndrome and, possibly, ASDs.


Asunto(s)
Sinapsis/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Síndrome de Angelman/metabolismo , Animales , Niño , Trastornos Generalizados del Desarrollo Infantil/metabolismo , Giro Dentado/citología , Giro Dentado/metabolismo , Embrión de Mamíferos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Ratones , Ratas , Ratas Long-Evans , Receptores de la Familia Eph/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína de Unión al GTP rhoA/genética
7.
Cell ; 140(5): 704-16, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20211139

RESUMEN

Angelman Syndrome is a debilitating neurological disorder caused by mutation of the E3 ubiquitin ligase Ube3A, a gene whose mutation has also recently been associated with autism spectrum disorders (ASDs). The function of Ube3A during nervous system development and how Ube3A mutations give rise to cognitive impairment in individuals with Angleman Syndrome and ASDs are not clear. We report here that experience-driven neuronal activity induces Ube3A transcription and that Ube3A then regulates excitatory synapse development by controlling the degradation of Arc, a synaptic protein that promotes the internalization of the AMPA subtype of glutamate receptors. We find that disruption of Ube3A function in neurons leads to an increase in Arc expression and a concomitant decrease in the number of AMPA receptors at excitatory synapses. We propose that this deregulation of AMPA receptor expression at synapses may contribute to the cognitive dysfunction that occurs in Angelman Syndrome and possibly other ASDs.


Asunto(s)
Síndrome de Angelman/fisiopatología , Proteínas del Citoesqueleto/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células Cultivadas , Cognición , Humanos , Ratones , Ratones Noqueados , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Ubiquitinación
8.
Neuron ; 65(6): 886-98, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20346763

RESUMEN

Itch is the least well understood of all the somatic senses, and the neural circuits that underlie this sensation are poorly defined. Here we show that the atonal-related transcription factor Bhlhb5 is transiently expressed in the dorsal horn of the developing spinal cord and appears to play a role in the formation and regulation of pruritic (itch) circuits. Mice lacking Bhlhb5 develop self-inflicted skin lesions and show significantly enhanced scratching responses to pruritic agents. Through genetic fate-mapping and conditional ablation, we provide evidence that the pruritic phenotype in Bhlhb5 mutants is due to selective loss of a subset of inhibitory interneurons in the dorsal horn. Our findings suggest that Bhlhb5 is required for the survival of a specific population of inhibitory interneurons that regulate pruritus, and provide evidence that the loss of inhibitory synaptic input results in abnormal itch.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Interneuronas/patología , Células del Asta Posterior/patología , Prurito/genética , Prurito/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Supervivencia Celular/fisiología , Técnicas de Sustitución del Gen/métodos , Interneuronas/metabolismo , Ratones , Ratones Noqueados , Ratones Mutantes Neurológicos , Inhibición Neural/fisiología , Células del Asta Posterior/metabolismo , Prurito/fisiopatología , Médula Espinal/metabolismo , Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA