Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Pharmaceutics ; 16(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675188

RESUMEN

This study investigates the distinctive characteristics of iron oxide magnetic nanoparticles (mNPs) and their potential application in cancer therapy, focusing on melanoma. Three types of mNPs, pre-validated for safety, underwent molecular analysis to uncover the activated signaling pathways in melanoma cells. Using the Western blot technique, the study revealed that mNPs induce cytotoxicity, hinder proliferation through ERK1/2 dephosphorylation, and prompt proapoptotic effects, including DNA damage by inducing H2AX phosphorylation. Additionally, in vitro magnetic hyperthermia notably enhanced cellular damage in melanoma cells. Moreover, the quantification of intracellular iron levels through Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis unveils the precise dosage required to induce cellular damage effectively. These compelling findings not only shed light on the therapeutic potential of mNPs in melanoma treatment but also open exciting avenues for future research, heralding a new era in the development of targeted and effective cancer therapies. Indeed, by discerning the effective dose, our approach becomes instrumental in optimizing the therapeutic utilization of iron oxide magnetic nanoparticles, enabling the induction of precisely targeted and controlled cellular responses.

2.
J Med Chem ; 67(6): 5053-5063, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38470817

RESUMEN

The rising demand for novel cosmeceutical ingredients has highlighted peptides as a significant category. Based on the collagen turnover modulation properties of SA1-III, a decapeptide derived from a serine protease inhibitor (serpin A1), this study focused on designing shorter, second-generation peptides endowed with improved properties. A tetrapeptide candidate was further modified employing the retro-inverso approach that uses d-amino acids aiming to enhance peptide stability against dermal enzymes. Surprisingly, the modified peptide AAT11RI displayed notably high activity in vitro, as compared to its precursors, and suggested a mode of action based on the inhibition of collagen degradation. It is worth noting that AAT11RI showcases stability against dermal enzymes contained in human skin homogenates due to its rationally designed structure that hampers recognition by most proteases. The rational approach we embraced in this study underscored the added value of substantiated claims in the design of new cosmeceutical ingredients, representing a rarity in the field.


Asunto(s)
Cosmecéuticos , alfa 1-Antitripsina , Humanos , alfa 1-Antitripsina/química , alfa 1-Antitripsina/farmacología , Péptidos/farmacología , Péptidos/química , Colágeno , Adyuvantes Inmunológicos
3.
Pharmaceutics ; 15(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37765245

RESUMEN

Inflammatory diseases are common pathological processes caused by various acute and chronic factors, and some of them are autoimmune diseases. Exosomes are fundamental extracellular vesicles secreted by almost all cells, which contain a series of constituents, i.e., cytoskeletal and cytosolic proteins (actin, tubulin, and histones), nucleic acids (mRNA, miRNA, and DNA), lipids (diacylglycerophosphates, cholesterol, sphingomyelin, and ceramide), and other bioactive components (cytokines, signal transduction proteins, enzymes, antigen presentation and membrane transport/fusion molecules, and adhesion molecules). This review will be a synopsis of the knowledge on the contribution of exosomes from different cell sources as possible therapeutic agents against inflammation, focusing on several inflammatory diseases, neurological diseases, rheumatoid arthritis and osteoarthritis, intestinal bowel disease, asthma, and liver and kidney injuries. Current knowledge indicates that the role of exosomes in the therapy of inflammation and in inflammatory diseases could be distinctive. The main limitations to their clinical translation are still production, isolation, and storage. Additionally, there is an urgent need to personalize the treatments in terms of the selection of exosomes; their dosages and routes of administration; and a deeper knowledge about their biodistribution, type and incidence of adverse events, and long-term effects of exosomes. In conclusion, exosomes can be a very promising next-generation therapeutic option, superior to synthetic nanocarriers and cell therapy, and can represent a new strategy of effective, safe, versatile, and selective delivery systems in the future.

4.
Biomolecules ; 13(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37627274

RESUMEN

Immune checkpoints are involved in controlling the activation or inhibition of the immune response and are associated with receptors on the immune cell surface [...].


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Receptor de Muerte Celular Programada 1 , Neoplasias/tratamiento farmacológico , Membrana Celular , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
5.
J Transl Med ; 21(1): 102, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759828

RESUMEN

BACKGROUND: In the past decades studies on anti-tumoral drugs inhibiting matrix metalloproteinase (MMPs) were disappointing. Recently, we demonstrated that mature endothelial cells (ECs) and endothelial colony forming cells (ECFCs) can switch between invasion modes to cope with challenging environments, performing the "amoeboid angiogenesis" in the absence of proteases activity. METHODS: We first set out to investigate by ELISA if the inhibitors of the main protease family involved in angiogenesis were differently expressed during breast cancer progression. We used Marimastat, a broad-spectrum MMP inhibitor, as a means of inducing amoeboid characteristics and studied VEGF role in amoeboid angiogenesis. Thus, we performed invasion and capillary morphogenesis assay, morphological, cell signaling and in vivo mouse studies. RESULTS: Our data showed that TIMP1, TIMP2, alpha2-antiplasmin, PAI-1 and cystatin increase in breast cancer serum of patients with primary cancer and lymph node positive compared to healthy women. In vitro results revealed that the most high-powered protease inhibitors able to induce amoeboid invasion of ECFCs were TIMP1, 2 and 3. Surprisingly, Marimastat promotes ECFC invasion and tubular formation in vitro and in vivo, inducing amoeboid characteristics. We observed that the combination of Marimastat plus VEGF doesn't boost neither cell invasion nor vessel formation capacity. Moreover, inhibition of VEGF activity with Bevacizumab in the presence of Marimastat confirmed that amoeboid angiogenesis is independent from the stimulus of the main vascular growth factor, VEGF. CONCLUSIONS: We underline the importance to consider the amoeboid mechanism of endothelial and cancer cell invasion, probably responsible for the failure of synthetic metalloproteinase inhibitors as cancer therapy and tumor resistance to VEGF-targeted therapies, to set-up new drugs to be used in cancer therapy.


Asunto(s)
Amoeba , Neoplasias , Animales , Femenino , Ratones , Amoeba/metabolismo , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Células Endoteliales/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Morfogénesis , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Sistema de Señalización de MAP Quinasas
6.
Cancers (Basel) ; 14(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36291876

RESUMEN

The understanding of the molecular mechanisms leading to melanoma dissemination is urgently needed in view of the identification of new targets and the development of innovative strategies to improve patients' outcomes. Within the complexity of tumor intercellular communications leading to metastatic dissemination, extracellular vesicles (EV) released by tumor cells are central players. Indeed, the ability to travel through the circulatory system conveying oncogenic bioactive molecules even at distant sites makes EV capable of modulating recipient cells to facilitate metastatic dissemination. The dynamic remodeling of the tumor microenvironment might influence, along with a number of other events, tumoral EV release. We observed that, in melanoma, extracellular acidosis increases the release of EV enriched in miR-214, an onco-miRNA involved in melanoma metastasis. Then, miR-214-enriched EV were found to induce a state of macrophage activation, leading to an overproduction of proinflammatory cytokines and nitric oxide. Such an inflammatory microenvironment was able to alter the endothelial cell permeability, thereby facilitating the trans-endothelial migration of melanoma cells, a crucial step in the metastatic cascade. The use of synthetic miR-214 inhibitors and miR-214 overexpression allowed us to demonstrate the key role of miR-214 in the EV-dependent induction of macrophage activation. Overall, our in vitro study reveals that the release of tumor miR-214-enriched EV, potentiated by adapting tumor cells to extracellular acidosis, drives a macrophage-dependent trans-endothelial migration of melanoma cells. This finding points to miR-214 as a potential new therapeutic target to prevent melanoma intravasation.

7.
Mech Ageing Dev ; 206: 111689, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35728630

RESUMEN

Ageing is a complex biological phenomenon representing the major risk factor for developing age-related diseases, such as cardiovascular pathologies, neurodegenerative diseases, and cancer. Geroscience, the new vision of gerontology, identifies cellular senescence as an interconnected biological process that characterises ageing and age-related diseases. Therefore, many strategies have been employed in the last years to reduce the harmful effects of senescence, and among these, the most intriguing ones use nutraceutical compounds. Here we show that a pre-treatment with Quercetin, a bioactive flavonoid present in many fruits and vegetables, increasing cellular antioxidant defence, can alleviate Doxorubicin (Doxo)-induced cellular senescence in human normal WI-38 fibroblasts. Furthermore, our work demonstrates that Quercetin pre-treatment, reducing the number of senescent cells and the production of the senescence-associated secretory phenotype (SASP) factors, can decrease the pro-tumour effects of conditioned medium from Doxo-induced senescent fibroblasts on osteosarcoma cells. Overall, our findings are consistent with the hypothesis that targeting senescent cells can be an emerging strategy for cancer treatment, especially in elderly patients, in which senescent cells are already abundant in several tissues and organs.


Asunto(s)
Fenómenos Biológicos , Neoplasias , Anciano , Senescencia Celular , Doxorrubicina/farmacología , Fibroblastos/patología , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Quercetina/farmacología
8.
J Cell Mol Med ; 26(8): 2337-2350, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35278036

RESUMEN

Senescence occurs upon critical telomere shortening, or following DNA damage, oncogenic activation, hypoxia and oxidative stress, overall referred to stress-induced premature senescence (SIPS). In response to DNA damage, senescent cells release cytoplasmic chromatin fragments (CCFs), and express an altered secretome, the senescence-associated secretory phenotype (SASP), which contributes to generate a pro-inflammatory and pro-tumoral extracellular milieu. Polyphenols have gained significant attention owing to their anti-inflammatory and anti-tumour activities. Here, we studied the effect of oleuropein aglycone (OLE) and hydroxytyrosol (HT) on DNA damage, CCF appearance and SASP in a model of irradiation-induced senescence. Neonatal human dermal fibroblasts (NHDFs) were γ-irradiated and incubated with OLE, 5 µM and HT, 1 µM. Cell growth and senescence-associated (SA)-ß-Gal-staining were used as senescence markers. DNA damage was evaluated by Comet assay, lamin B1 expression, release of CCFs, cyclic GMP-AMP Synthase (cGAS) activation. IL-6, IL-8, MCP-1 and RANTES were measured by ELISA assay. Our results showed that OLE and HT exerted a protective effect on 8 Gy irradiation-induced senescence, preserving lamin B1 expression and reducing cGAS/STING/NFκB-mediated SASP. The ability of OLE and HT to mitigate DNA damage, senescence status and the related SASP in normal cells can be exploited to improve the efficacy and safety of cancer radiotherapy.


Asunto(s)
Neoplasias , Olea , Senescencia Celular , Daño del ADN , Humanos , Lamina Tipo B , FN-kappa B/genética , Neoplasias/metabolismo , Nucleotidiltransferasas/genética , Olea/metabolismo , Fenoles/farmacología , Radiación Ionizante
10.
Oncol Res ; 28(9): 873-884, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-34315564

RESUMEN

Malignant melanoma is a highly aggressive skin cancer characterized by an elevated grade of tumor cell plasticity. Such plasticity allows adaptation of melanoma cells to different hostile conditions and guarantees tumor survival and disease progression, including aggressive features such as drug resistance. Indeed, almost 50% of melanoma rapidly develop resistance to the BRAFV600E inhibitor vemurafenib, with fast tumor dissemination, a devastating consequence for patients outcomes. Vasculogenic mimicry (VM), the ability of cancer cells to organize themselves in perfused vascular-like channels, might sustain tumor spread by providing vemurafenib-resistant cancer cells with supplementary ways to enter into circulation and disseminate. Thus, this research aims to determine if vemurafenib resistance goes with the acquisition of VM ability by aggressive melanoma cells, and identify a driving molecule for both vemurafenib resistance and VM. We used two independent experimental models of drug-resistant melanoma cells, the first one represented by a chronic adaptation of melanoma cells to extracellular acidosis, known to drive a particularly aggressive and vemurafenib-resistant phenotype, the second one generated with chronic vemurafenib exposure. By performing in vitro tube formation assay and evaluating the expression levels of the VM markers EphA2 and VE-cadherin by Western blotting and flow cytometer analyses, we demonstrated that vemurafenib-resistant cells obtained by both models are characterized by an increased ability to perform VM. Moreover, by exploiting the CRISPR-Cas9 technique and using the urokinase plasminogen activator receptor (uPAR) inhibitor M25, we identified uPAR as a driver of VM expressed by vemurafenib-resistant melanoma cells. Thus, uPAR targeting may be successfully leveraged as a new complementary therapy to inhibit VM in drug-resistant melanoma patients, to counteract the rapid progression and dissemination of the disease.


Asunto(s)
Melanoma , Preparaciones Farmacéuticas , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Vemurafenib/farmacología
11.
Int J Cancer ; 150(2): 362-373, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34486752

RESUMEN

The role of fibroblast APC mutation in carcinogenesis is not clear. Apc+/- colon fibroblasts have been previously characterized: however, little is known about their behavior at very early-stage of colon carcinogenesis. We cultured colon mucosa fibroblasts (PCF, Apc+/- ) of Pirc rats (F344/NTac-Apcam1137 ) at an early stage of tumorigenesis, in absence of preneoplastic lesions, and of age-matched wt (WCF): DNA damage levels, inflammatory phenotype and the expression of known markers of CAFs were analyzed. The latter were also assessed by microarray analysis on colon normal mucosa of Pirc and wt animals. PCF exhibited higher proliferative rates (P < .001) and delayed replicative senescence onset (P < .05) compared to WCF, along with a lower level of oxidative DNA damage (P < .05). Furthermore, a constitutively higher expression of COX-2 and sensitivity to inflammatory stimuli was found in PCF compared to WCF (P < .05), accompanied by higher invasive capability (P < .05) and presence of cytoplasmic chromatin foci (cytoplasmic chromatin foci, P < .05). However, they neither expressed CAFs markers (α-SMA, IL-6) nor responded to CAFs activating stimuli (TGF-ß). Accordingly, CAFs markers and activating stimuli resulted down-regulated in Pirc normal mucosa compared to wt, whereas DNA damage response and tolerance pathways were overexpressed. These data show for the first time that a proliferative and inflammatory phenotype characterizes Apc+/- colon fibroblasts since very early stages of colon tumorigenesis, and indicate a role of Apc mutation in driving fibroblast phenotypic alterations that could support the establishment of a protumorigenic environment. Early pharmacological targeting of these dysfunctions might impact on tumor prevention in FAP patients.


Asunto(s)
Proliferación Celular , Colon/patología , Neoplasias del Colon/patología , Daño del ADN , Fibroblastos/patología , Genes APC , Inflamación/patología , Animales , Apoptosis , Colon/metabolismo , Neoplasias del Colon/etiología , Neoplasias del Colon/metabolismo , Fibroblastos/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Mutación , Fenotipo , Ratas , Ratas Endogámicas F344
12.
Rheumatology (Oxford) ; 61(9): 3864-3874, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34888638

RESUMEN

OBJECTIVE: Emerging evidence demonstrates that excessive accumulation of senescent cells is associated with some chronic diseases and suggests a pathogenic role of cellular senescence in fibrotic processes, such as that occurring in ageing or in SSc. Recently we demonstrated that parvovirus B19 (B19V) activates normal human dermal fibroblasts and induces expression of different profibrotic/pro-inflammatory genes. This observation prompted us to investigate whether it is also able to induce fibroblast senescence as a potential pathogenetic mechanism in B19V-induced fibrosis. METHODS: Primary cultures of fibroblasts were infected with B19V and analysed for the acquisition of senescence markers, such as morphological modifications, senescence-associated ß-galactosidase (SA-ß-gal) activity, DNA damage response and expression of senescence-associated secretory phenotype (SASP)-related factors. RESULTS: We demonstrated that B19V-infected fibroblasts develop typical senescence features such as enlarged and flat-shaped morphology and SA-ß-gal activity similar to that observed in SSc skin fibroblasts. They also developed an SASP-like phenotype characterized by mRNA expression and release of some pro-inflammatory cytokines, along with activation of the transcription factor nuclear factor κB. Moreover, we observed B19V-induced DNA damage with the comet assay: a subpopulation of fibroblasts from B19V-infected cultures showed a significantly higher level of DNA strand breaks and oxidative damage compared with mock-infected cells. An increased level and nuclear localization of γH2AX, a hallmark of DNA damage response, were also found. CONCLUSIONS: B19V-induced senescence and production of SASP-like factors in normal dermal fibroblasts could represent a new pathogenic mechanism of non-productive B19V infection, which may have a role in the fibrotic process.


Asunto(s)
Parvovirus B19 Humano , Esclerodermia Sistémica , Senescencia Celular , Fibroblastos/metabolismo , Fibrosis , Humanos , Parvovirus B19 Humano/genética , Esclerodermia Sistémica/patología
13.
J Invest Dermatol ; 141(11): 2566-2568, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34688409

RESUMEN

In their new article in the Journal of Investigative Dermatology, Tseng et al. (2021) confirm that the sensitivity of melanoma cells to anti‒PD-L1 checkpoint inhibitor therapy is correlated with high PD-L1 surface expression. By blocking PD-L1 membrane clearing, controlled by LRP1 and PAI-1, the expression of high-cell-surface levels of PD-L1 was maintained.


Asunto(s)
Melanoma , Inhibidor 1 de Activador Plasminogénico , Humanos , Factores Inmunológicos , Inmunoterapia , Melanoma/tratamiento farmacológico
14.
Cancers (Basel) ; 13(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065529

RESUMEN

Advanced colorectal cancer (CRC) is highly metastatic and often results in peritoneal dissemination. The extracellular vesicles (EVs) released by cancer cells in the microenvironment are important mediators of tumor metastasis. We investigated the contribution of EV-mediated interaction between peritoneal mesothelial cells (MCs) and CRC cells in generating a pro-metastatic environment in the peritoneal cavity. Peritoneal MCs isolated from peritoneal lavage fluids displayed high CD44 expression, substantial mesothelial-to-mesenchymal transition (MMT) and released EVs that both directed tumor invasion and caused reprogramming of secretory profiles by increasing TGF-ß1 and uPA/uPAR expression and MMP-2/9 activation in tumor cells. Notably, the EVs released by tumor cells induced apoptosis by activating caspase-3, peritoneal MC senescence, and MMT, thereby augmenting the tumor-promoting potential of these cells in the peritoneal cavity. By using pantoprazole, we reduced the biogenesis of EVs and their pro-tumor functions. In conclusion, our findings provided evidence of underlying mechanisms of CRC dissemination driven by the interaction of peritoneal MCs and tumor cells via the EVs released in the peritoneal cavity, which may have important implications for the clinical management of patients.

15.
Front Oncol ; 11: 663225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055629

RESUMEN

uPAR is a globular protein, tethered to the cell membrane by a GPI-anchor involved in several cancer-related properties and its overexpression commonly correlates with poor prognosis and metastasis. We investigated the consequences of uPAR irreversible loss in human melanoma and colon cancer cell lines, knocking out its expression by CRISPR/Cas9. We analyzed through flow cytometry, western blotting and qPCR, the modulation of the most known cancer stem cells-associated genes and the EGFR while we observed the proliferation rate exploiting 2D and 3D cellular models. We also generated uPAR "rescue" expression cell lines as well as we promoted the expression of only its 3'UTR to demonstrate the involvement of uPAR mRNA in tumor progression. Knocking out PLAUR, uPAR-encoding gene, we observed an inhibited growth ratio unexpectedly coupled with a significant percentage of cells acquiring a stem-like phenotype. In vivo experiments demonstrated that uPAR loss completely abrogates tumorigenesis despite the gained stem-like profile. Nonetheless, we proved that the reintroduction of the 3'UTR of PLAUR gene was sufficient to restore the wild-type status validating the hypothesis that such a region may act as a "molecular sponge". In particular miR146a, by binding PLAUR 3' UTR region might be responsible for uPAR-dependent inhibition of EGFR expression.

16.
Adv Sci (Weinh) ; 8(4): 2001175, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33643785

RESUMEN

Near infrared (NIR)-resonant gold nanoparticles (AuNPs) hold great promise in cancer diagnostics and treatment. However, translating the theranostic potential of AuNPs into clinical applications still remains a challenge due to the difficulty to improve the efficiency and specificity of tumor delivery in vivo as well as the clearance from liver and spleen to avoid off target toxicity. In this study, endothelial colony forming cells (ECFCs) are exploited as vehicles to deliver AuNPs to tumors. It is first demonstrated that ECFCs display a great capability to intake AuNPs without losing viability, and exert antitumor activity per se. Using a human melanoma xenograft mouse model, it is next demonstrated that AuNP-loaded ECFCs retain their capacity to migrate to tumor sites in vivo 1 day after injection and stay in the tumor mass for more than 1 week. In addition, it is demonstrated that ECFC-loaded AuNPs are efficiently cleared by the liver over time and do not elicit any sign of damage to healthy tissue.

17.
Langmuir ; 37(11): 3248-3260, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33683133

RESUMEN

An alternative approach to classical surface plasmon resonance spectroscopy is dielectric-loaded waveguide (DLWG) spectroscopy, widely used in the past decades to investigate bio-interaction kinetics. Despite their wide application, a successful and clear approach to use the DLWGs for the one-step simultaneous determination of both the thickness and refractive index of organic thin films is absent in the literature. We propose here, for the first time, an experimental protocol based on the multimodal nature of DLWGs to be followed in order to evaluate the optical constants and thickness of transparent thin films with a unique measurement. The proposed method is general and can be applied to every class of transparent organic materials, with a resolution and accuracy which depend on the nature of the external medium (gaseous or liquid), the geometrical characteristics of the DLWG, and the values of both the thickness and dielectric constant of the thin film. From the experimental point of view, the method is demonstrated in a nitrogen environment with an accuracy of about 3%, for the special case of electroluminescent thin films of Eu3+ß-diketonate complexes, with an average thickness of about 20 nm. The high value of the refractive index measured for the thin film with the Eu(btfa)3(t-bpete) complex was confirmed by the use of a spectroscopic model based on the Judd-Ofelt theory, in which the magnetic dipole transition 5D0 → 7F1 (Eu3+) for similar films containing Eu3+ complexes is taken as a reference. The DLWGs are finally applied to control the refractive index changes of the organic thin films under UVA irradiation, with potential applications in dosimetry and monitoring light-induced transformation in organic thin films.

18.
Rheumatology (Oxford) ; 60(10): 4508-4519, 2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33471123

RESUMEN

OBJECTIVES: SSc is an autoimmune disease characterized by peripheral vasculopathy and skin and internal organ fibrosis. Accumulating evidence underlines a close association between a metabolic reprogramming of activated fibroblasts and fibrosis. This prompted us to determine the metabolism of SSc dermal fibroblasts and the effect on the vasculopathy characterizing the disease. METHODS: A Seahorse XF96 Extracellular Flux Analyzer was used to evaluate SSc fibroblast metabolism. In vitro invasion and capillary morphogenesis assays were used to determine the angiogenic ability of endothelial cells (ECs). Immunofluorescence, flow cytometry and real-time PCR techniques provided evidence of the molecular mechanism behind the impaired vascularization that characterizes SSc patients. RESULTS: SSc fibroblasts, compared with controls, showed a boosted glycolytic metabolism with increased lactic acid release and subsequent extracellular acidification that in turn was found to impair EC invasion and organization in capillary-like networks without altering cell viability. A molecular link between extracellular acidosis and endothelial dysfunction was identified as acidic ECs upregulated MMP-12, which cleaves and inactivates urokinase-type plasminogen activator receptor, impairing angiogenesis in SSc. Moreover, the acidic environment was found to induce the loss of endothelial markers and the acquisition of mesenchymal-like features in ECs, thus promoting the endothelial-to-mesenchymal transition process that contributes to both capillary rarefaction and tissue fibrosis in SSc. CONCLUSION: This study showed the relationship of the metabolic reprogramming of SSc dermal fibroblasts, extracellular acidosis and endothelial dysfunction that may contribute to the impairment and loss of peripheral capillary networks in SSc disease.


Asunto(s)
Acidosis/fisiopatología , Microambiente Celular/fisiología , Endotelio Vascular/fisiopatología , Esclerodermia Sistémica/fisiopatología , Enfermedades Vasculares/fisiopatología , Acidosis/etiología , Adulto , Anciano , Western Blotting , Células Cultivadas , Células Endoteliales/metabolismo , Femenino , Fibroblastos/metabolismo , Glucólisis/fisiología , Humanos , Masculino , Persona de Mediana Edad , Neovascularización Patológica , Esclerodermia Sistémica/complicaciones , Piel/citología , Enfermedades Vasculares/etiología
19.
Toxicol In Vitro ; 72: 105094, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33460736

RESUMEN

Over the past few decades nanotechnology has paved its way into cancer treatment procedures with the use of nanoparticles (NPs) for contrast media and therapeutic agents. Iron based NPs are the most investigated since they can be used for drug delivery, imaging and when magnetically activate employed as local heat sources in cancer hyperthermia. In this work, was performed synthesis, characterization and biological evaluation of different types of iron oxide nanoparticles (mNPs'), as promising material for tumor hyperthermia. The surface of mNPs' has modified with inorganic stabilizing agents to particularly improve characteristics such as their magnetic properties, colloidal stability and biocompatibility. The successful coating of mNPs' was confirmed by morphological and structural characterization by transmission electron microscopy (TEM) and Fourier-Transform Infra-Red spectroscopy (FT-IR), while their hydrodynamic diameter was studied by using Dynamic light scattering (DLS). X-ray Diffraction (XRD) proved that the crystallite phase of mNPs' is the same with the pattern of magnetite. Superparamagnetic behavior and mNPs' response under the application of alternating magnetic field (AMF) were also thoroughly investigated and showed good heating efficiency in magnetic hyperthermia experiments. The contrast ability in magnetic resonance imaging (MRI) is also discussed indicating that mNPs are negative MRI contrast types. Nonetheless the effects of mNPs on cell viability was performed by MTT on human keratinocytes, human embryonic kidney cells, endothelial cells and by hemolytic assay on erythrocytes. In healthy keratinocytes wound healing assay in different time intervals was performed, assessing both the cell migration and wound closure. Endothelial cells have also been studied in functional activity performing capillary morphogenesis. In vitro studies showed that mNPs are safely taken by the healthy cells and do not interfere with the biological processes such as cell migration and motility.


Asunto(s)
Nanopartículas Magnéticas de Óxido de Hierro/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Queratinocitos/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro/química , Imagen por Resonancia Magnética , Medicina de Precisión , Medición de Riesgo , Cicatrización de Heridas/efectos de los fármacos
20.
Intern Emerg Med ; 16(2): 339-347, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32445164

RESUMEN

Analysis of coagulation disorders and assessment of rebalanced hemostasis with the use of traditional coagulation assays is challenging in cirrhotic patients. Therefore, alternative tests are under investigation for the evaluation of coagulopathy in this specific setting. Aim of this study was to analyze the modifications of clot structure and function in cirrhotic patients with different degrees of severity. Cirrhotic patients referred to our Unit were consecutively enrolled. Global test measurements, including clot and lysis assays, clot lysis time, and determination of other fibrinolytic parameters, were performed. Analyses of clot formation, morphology, and lysis were performed with a turbidimetric clotting and lysis assay (EuroCLOT). Lysis of a tissue factor-induced clot by exogenous tissue plasminogen activator was analyzed by studying the modifications of turbidity during clot formation and the following lysis. We evaluated coagulative and fibrinolytic parameters in both plasma and ascites. Urokinase plasminogen activator (uPA) and gelatinase activity in ascites were also measured. We analyzed data from 33 cirrhotic patients (11 in Child-Pugh class A; 22 in class B or C and with ascites) and 21 healthy subjects (HS). In class B/C patients prolonged latency time, a decline in clotting absorbance, and decreased fibrin formation were observed in comparison with class A and HS. Generated curves and Thrombin-Activatable Fibrinolysis Inhibitor (TAFI) progressively declined from HS to class C patients, whereas levels of plasminogen activator inhibitor-1 and tissue plasminogen activator increased. D-dimer levels were markedly increased in ascites, together with significantly smaller levels of TAFI, αlfa2-antiplasmin, and plasminogen. Caseinolytic activity was also present. Class C patients showed smaller amount of uPA and significantly lower levels of matrix metallopeptidases (MMP)2 in ascites in comparison with Class B subjects. Clot formation and lysis are altered in cirrhosis and fibrinolysis is activated in ascites. Ascitic levels of uPA and MMP2 are reduced and inversely related to the severity of liver disease.


Asunto(s)
Ascitis/sangre , Ascitis/complicaciones , Biomarcadores/sangre , Coagulación Sanguínea/fisiología , Fibrinólisis/fisiología , Cirrosis Hepática/sangre , Cirrosis Hepática/complicaciones , Anciano , Pruebas de Coagulación Sanguínea , Femenino , Humanos , Masculino , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA