Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sci Adv ; 10(21): eadh2588, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781336

RESUMEN

Sample-wise deconvolution methods estimate cell-type proportions and gene expressions in bulk tissue samples, yet their performance and biological applications remain unexplored, particularly in human brain transcriptomic data. Here, nine deconvolution methods were evaluated with sample-matched data from bulk tissue RNA sequencing (RNA-seq), single-cell/nuclei (sc/sn) RNA-seq, and immunohistochemistry. A total of 1,130,767 nuclei per cells from 149 adult postmortem brains and 72 organoid samples were used. The results showed the best performance of dtangle for estimating cell proportions and bMIND for estimating sample-wise cell-type gene expressions. For eight brain cell types, 25,273 cell-type eQTLs were identified with deconvoluted expressions (decon-eQTLs). The results showed that decon-eQTLs explained more schizophrenia GWAS heritability than bulk tissue or single-cell eQTLs did alone. Differential gene expressions associated with Alzheimer's disease, schizophrenia, and brain development were also examined using the deconvoluted data. Our findings, which were replicated in bulk tissue and single-cell data, provided insights into the biological applications of deconvoluted data in multiple brain disorders.


Asunto(s)
Encéfalo , Análisis de la Célula Individual , Transcriptoma , Humanos , Encéfalo/metabolismo , Análisis de la Célula Individual/métodos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Perfilación de la Expresión Génica/métodos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patología , Estudio de Asociación del Genoma Completo/métodos , Análisis de Secuencia de ARN/métodos , Adulto
2.
bioRxiv ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38798404

RESUMEN

The repertory of neurons generated by progenitor cells depends on their location along antero-posterior and dorso-ventral axes of the neural tube. To understand if recreating those axes was sufficient to specify human brain neuronal diversity, we designed a mesofluidic device termed Duo-MAPS to expose induced pluripotent stem cells (iPSC) to concomitant orthogonal gradients of a posteriorizing and a ventralizing morphogen, activating WNT and SHH signaling, respectively. Comparison of single cell transcriptomes with fetal human brain revealed that Duo-MAPS-patterned organoids generated the major neuronal lineages of the forebrain, midbrain, and hindbrain. Morphogens crosstalk translated into early patterns of gene expression programs predicting the generation of specific brain lineages. Human iPSC lines from six different genetic backgrounds showed substantial differences in response to morphogens, suggesting that interindividual genomic and epigenomic variations could impact brain lineages formation. Morphogen gradients promise to be a key approach to model the brain in its entirety.

3.
Sci Rep ; 14(1): 3936, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365907

RESUMEN

Regulation of gene expression through enhancers is one of the major processes shaping the structure and function of the human brain during development. High-throughput assays have predicted thousands of enhancers involved in neurodevelopment, and confirming their activity through orthogonal functional assays is crucial. Here, we utilized Massively Parallel Reporter Assays (MPRAs) in stem cells and forebrain organoids to evaluate the activity of ~ 7000 gene-linked enhancers previously identified in human fetal tissues and brain organoids. We used a Gaussian mixture model to evaluate the contribution of background noise in the measured activity signal to confirm the activity of ~ 35% of the tested enhancers, with most showing temporal-specific activity, suggesting their evolving role in neurodevelopment. The temporal specificity was further supported by the correlation of activity with gene expression. Our findings provide a valuable gene regulatory resource to the scientific community.


Asunto(s)
Regulación de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos , Humanos , Organoides , Prosencéfalo , Elementos de Facilitación Genéticos
5.
bioRxiv ; 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37645832

RESUMEN

Regulation of gene expression through enhancers is one of the major processes shaping the structure and function of the human brain during development. High-throughput assays have predicted thousands of enhancers involved in neurodevelopment, and confirming their activity through orthogonal functional assays is crucial. Here, we utilized Massively Parallel Reporter Assays (MPRAs) in stem cells and forebrain organoids to evaluate the activity of ~7,000 gene-linked enhancers previously identified in human fetal tissues and brain organoids. We used a Gaussian mixture model to evaluate the contribution of background noise in the measured activity signal to confirm the activity of ~35% of the tested enhancers, with most showing temporal-specific activity, suggesting their evolving role in neurodevelopment. The temporal specificity was further supported by the correlation of activity with gene expression. Our findings provide a valuable gene regulatory resource to the scientific community.

7.
Nat Neurosci ; 26(9): 1505-1515, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37563294

RESUMEN

Idiopathic autism spectrum disorder (ASD) is highly heterogeneous, and it remains unclear how convergent biological processes in affected individuals may give rise to symptoms. Here, using cortical organoids and single-cell transcriptomics, we modeled alterations in the forebrain development between boys with idiopathic ASD and their unaffected fathers in 13 families. Transcriptomic changes suggest that ASD pathogenesis in macrocephalic and normocephalic probands involves an opposite disruption of the balance between excitatory neurons of the dorsal cortical plate and other lineages such as early-generated neurons from the putative preplate. The imbalance stemmed from divergent expression of transcription factors driving cell fate during early cortical development. While we did not find genomic variants in probands that explained the observed transcriptomic alterations, a significant overlap between altered transcripts and reported ASD risk genes affected by rare variants suggests a degree of gene convergence between rare forms of ASD and the developmental transcriptome in idiopathic ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Masculino , Humanos , Trastorno Autístico/genética , Trastorno del Espectro Autista/patología , Neuronas/metabolismo , Neurogénesis , Prosencéfalo/metabolismo , Organoides/metabolismo
8.
CRISPR J ; 6(2): 176-182, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37071670

RESUMEN

The CRISPR-Cas9 system has enabled researchers to precisely modify/edit the sequence of a genome. A typical editing experiment consists of two steps: (1) editing cultured cells; (2) cell cloning and selection of clones with and without intended edit, presumed to be isogenic. The application of CRISPR-Cas9 system may result in off-target edits, whereas cloning will reveal culture-acquired mutations. We analyzed the extent of the former and the latter by whole genome sequencing in three experiments involving separate genomic loci and conducted by three independent laboratories. In all experiments we hardly found any off-target edits, whereas detecting hundreds to thousands of single nucleotide mutations unique to each clone after relatively short culture of 10-20 passages. Notably, clones also differed in copy number alterations (CNAs) that were several kb to several mb in size and represented the largest source of genomic divergence among clones. We suggest that screening of clones for mutations and CNAs acquired in culture is a necessary step to allow correct interpretation of DNA editing experiments. Furthermore, since culture associated mutations are inevitable, we propose that experiments involving derivation of clonal lines should compare a mix of multiple unedited lines and a mix of multiple edited lines.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Mutación , ADN
9.
bioRxiv ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993743

RESUMEN

Sample-wise deconvolution methods have been developed to estimate cell-type proportions and gene expressions in bulk-tissue samples. However, the performance of these methods and their biological applications has not been evaluated, particularly on human brain transcriptomic data. Here, nine deconvolution methods were evaluated with sample-matched data from bulk-tissue RNAseq, single-cell/nuclei (sc/sn) RNAseq, and immunohistochemistry. A total of 1,130,767 nuclei/cells from 149 adult postmortem brains and 72 organoid samples were used. The results showed the best performance of dtangle for estimating cell proportions and bMIND for estimating sample-wise cell-type gene expression. For eight brain cell types, 25,273 cell-type eQTLs were identified with deconvoluted expressions (decon-eQTLs). The results showed that decon-eQTLs explained more schizophrenia GWAS heritability than bulk-tissue or single-cell eQTLs alone. Differential gene expression associated with multiple phenotypes were also examined using the deconvoluted data. Our findings, which were replicated in bulk-tissue RNAseq and sc/snRNAseq data, provided new insights into the biological applications of deconvoluted data.

12.
Mol Psychiatry ; 27(12): 5007-5019, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36447010

RESUMEN

Tourette Syndrome (TS) is a neuropsychiatric disorder thought to involve a reduction of basal ganglia (BG) interneurons and malfunctioning of the BG circuitry. However, whether interneurons fail to develop or are lost postnatally remains unknown. To investigate the pathophysiology of early development in TS, induced pluripotent stem cell (iPSC)-derived BG organoids from TS patients and healthy controls were compared on multiple levels of measurement and analysis. BG organoids from TS individuals manifested an impaired medial ganglionic eminence fate and a decreased differentiation of cholinergic and GABAergic interneurons. Transcriptome analyses revealed organoid mispatterning in TS, with a preference for dorsolateral at the expense of ventromedial fates. Our results point to altered expression of GLI transcription factors downstream of the Sonic Hedgehog signaling pathway with cilia disruption at the earliest stages of BG organoid differentiation as a potential mechanism for the BG mispatterning in TS. This study uncovers early neurodevelopmental underpinnings of TS neuropathological deficits using organoids as a model system.


Asunto(s)
Síndrome de Tourette , Humanos , Síndrome de Tourette/metabolismo , Proteínas Hedgehog/metabolismo , Ganglios Basales/patología , Interneuronas/metabolismo , Organoides/metabolismo
13.
Science ; 377(6605): 511-517, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35901164

RESUMEN

We analyzed 131 human brains (44 neurotypical, 19 with Tourette syndrome, 9 with schizophrenia, and 59 with autism) for somatic mutations after whole genome sequencing to a depth of more than 200×. Typically, brains had 20 to 60 detectable single-nucleotide mutations, but ~6% of brains harbored hundreds of somatic mutations. Hypermutability was associated with age and damaging mutations in genes implicated in cancers and, in some brains, reflected in vivo clonal expansions. Somatic duplications, likely arising during development, were found in ~5% of normal and diseased brains, reflecting background mutagenesis. Brains with autism were associated with mutations creating putative transcription factor binding motifs in enhancer-like regions in the developing brain. The top-ranked affected motifs corresponded to MEIS (myeloid ectopic viral integration site) transcription factors, suggesting a potential link between their involvement in gene regulation and autism.


Asunto(s)
Envejecimiento , Trastorno Autístico , Encéfalo , Mutagénesis , Factores de Transcripción , Envejecimiento/genética , Trastorno Autístico/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Humanos , Mutación , Unión Proteica/genética , Factores de Transcripción/genética , Secuenciación Completa del Genoma
14.
PLoS Comput Biol ; 18(4): e1009487, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35442945

RESUMEN

Accurate discovery of somatic mutations in a cell is a challenge that partially lays in immaturity of dedicated analytical approaches. Approaches comparing a cell's genome to a control bulk sample miss common mutations, while approaches to find such mutations from bulk suffer from low sensitivity. We developed a tool, All2, which enables accurate filtering of mutations in a cell without the need for data from bulk(s). It is based on pair-wise comparisons of all cells to each other where every call for base pair substitution and indel is classified as either a germline variant, mosaic mutation, or false positive. As All2 allows for considering dropped-out regions, it is applicable to whole genome and exome analysis of cloned and amplified cells. By applying the approach to a variety of available data, we showed that its application reduces false positives, enables sensitive discovery of high frequency mutations, and is indispensable for conducting high resolution cell lineage tracing.


Asunto(s)
Exoma , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación INDEL/genética , Mutación/genética , Secuenciación del Exoma
15.
Nat Neurosci ; 24(2): 186-196, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33432196

RESUMEN

Retrotransposons can cause somatic genome variation in the human nervous system, which is hypothesized to have relevance to brain development and neuropsychiatric disease. However, the detection of individual somatic mobile element insertions presents a difficult signal-to-noise problem. Using a machine-learning method (RetroSom) and deep whole-genome sequencing, we analyzed L1 and Alu retrotransposition in sorted neurons and glia from human brains. We characterized two brain-specific L1 insertions in neurons and glia from a donor with schizophrenia. There was anatomical distribution of the L1 insertions in neurons and glia across both hemispheres, indicating retrotransposition occurred during early embryogenesis. Both insertions were within the introns of genes (CNNM2 and FRMD4A) inside genomic loci associated with neuropsychiatric disorders. Proof-of-principle experiments revealed these L1 insertions significantly reduced gene expression. These results demonstrate that RetroSom has broad applications for studies of brain development and may provide insight into the possible pathological effects of somatic retrotransposition.


Asunto(s)
Aprendizaje Automático , Mutagénesis Insercional/genética , Neuroglía , Neuronas , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Proteínas de Transporte de Catión/genética , Desarrollo Embrionario/genética , Femenino , Genoma/genética , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Elementos de Nucleótido Esparcido Largo , Trastornos Mentales/genética , Embarazo , Retroelementos , Esquizofrenia/genética
16.
Genome Res ; 30(12): 1695-1704, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33122304

RESUMEN

Somatic mosaicism, manifesting as single nucleotide variants (SNVs), mobile element insertions, and structural changes in the DNA, is a common phenomenon in human brain cells, with potential functional consequences. Using a clonal approach, we previously detected 200-400 mosaic SNVs per cell in three human fetal brains (15-21 wk postconception). However, structural variation in the human fetal brain has not yet been investigated. Here, we discover and validate four mosaic structural variants (SVs) in the same brains and resolve their precise breakpoints. The SVs were of kilobase scale and complex, consisting of deletion(s) and rearranged genomic fragments, which sometimes originated from different chromosomes. Sequences at the breakpoints of these rearrangements had microhomologies, suggesting their origin from replication errors. One SV was found in two clones, and we timed its origin to ∼14 wk postconception. No large scale mosaic copy number variants (CNVs) were detectable in normal fetal human brains, suggesting that previously reported megabase-scale CNVs in neurons arise at later stages of development. By reanalysis of public single nuclei data from adult brain neurons, we detected an extrachromosomal circular DNA event. Our study reveals the existence of mosaic SVs in the developing human brain, likely arising from cell proliferation during mid-neurogenesis. Although relatively rare compared to SNVs and present in ∼10% of neurons, SVs in developing human brain affect a comparable number of bases in the genome (∼6200 vs. ∼4000 bp), implying that they may have similar functional consequences.


Asunto(s)
Encéfalo/embriología , ADN Circular/genética , Variación Estructural del Genoma , Análisis de Secuencia de ADN/métodos , Evolución Clonal , Femenino , Técnicas de Genotipaje , Edad Gestacional , Humanos , Mosaicismo , Neurogénesis , Embarazo
17.
Cell Stem Cell ; 24(6): 837-838, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31173711

RESUMEN

Yoshiki Sasai pioneered the organoid field with his idea of mimicking embryonic development in 3D. We shine a spotlight on his seminal work describing how the innate ability of embryonic stem cells to self-organize into layers and grow in a polarized fashion fosters their appropriate differentiation and response to morphogens.


Asunto(s)
Encéfalo/fisiología , Organoides/fisiología , Animales , Bioingeniería , Comunicación Celular , Técnicas de Cultivo de Célula , Diferenciación Celular , Autorrenovación de las Células , Células Madre Embrionarias/citología , Terapia Genética , Humanos , Medicina de Precisión , Medicina Regenerativa
18.
Cell Stem Cell ; 24(3): 462-476.e6, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849367

RESUMEN

The SOX2 transcription factor is critical for neural stem cell (NSC) maintenance and brain development. Through chromatin immunoprecipitation (ChIP) and chromatin interaction analysis (ChIA-PET), we determined genome-wide SOX2-bound regions and Pol II-mediated long-range chromatin interactions in brain-derived NSCs. SOX2-bound DNA was highly enriched in distal chromatin regions interacting with promoters and carrying epigenetic enhancer marks. Sox2 deletion caused widespread reduction of Pol II-mediated long-range interactions and decreased gene expression. Genes showing reduced expression in Sox2-deleted cells were significantly enriched in interactions between promoters and SOX2-bound distal enhancers. Expression of one such gene, Suppressor of Cytokine Signaling 3 (Socs3), rescued the self-renewal defect of Sox2-ablated NSCs. Our work identifies SOX2 as a major regulator of gene expression through connections to the enhancer network in NSCs. Through the definition of such a connectivity network, our study shows the way to the identification of genes and enhancers involved in NSC maintenance and neurodevelopmental disorders.


Asunto(s)
Cromatina/metabolismo , Células-Madre Neurales/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Células Cultivadas , Redes Reguladoras de Genes/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación , Factores de Transcripción SOXB1/deficiencia , Factores de Transcripción SOXB1/genética , Pez Cebra
19.
Exp Cell Res ; 368(2): 225-235, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29730163

RESUMEN

Mutations in MECP2 gene have been identified in more than 95% of patients with classic Rett syndrome, one of the most common neurodevelopmental disorders in females. Taking advantage of the breakthrough technology of genetic reprogramming, we investigated transcriptome changes in neurons differentiated from induced Pluripotent Stem Cells (iPSCs) derived from patients with different mutations. Profiling by RNA-seq in terminally differentiated neurons revealed a prominent GABAergic circuit disruption along with a perturbation of cytoskeleton dynamics. In particular, in mutated neurons we identified a significant decrease of acetylated α-tubulin which can be reverted by treatment with selective inhibitors of HDAC6, the main α-tubulin deacetylase. These findings contribute to shed light on Rett pathogenic mechanisms and provide hints for the treatment of Rett-associated epileptic behavior as well as for the definition of new therapeutic strategies for Rett syndrome.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Histona Desacetilasa 6/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Síndrome de Rett/metabolismo , Síndrome de Rett/fisiopatología , Tubulina (Proteína)/metabolismo , Acetilación , Diferenciación Celular/fisiología , Femenino , Humanos , Masculino
20.
Science ; 359(6375): 550-555, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29217587

RESUMEN

Somatic mosaicism in the human brain may alter function of individual neurons. We analyzed genomes of single cells from the forebrains of three human fetuses (15 to 21 weeks postconception) using clonal cell populations. We detected 200 to 400 single-nucleotide variations (SNVs) per cell. SNV patterns resembled those found in cancer cell genomes, indicating a role of background mutagenesis in cancer. SNVs with a frequency of >2% in brain were also present in the spleen, revealing a pregastrulation origin. We reconstructed cell lineages for the first five postzygotic cleavages and calculated a mutation rate of ~1.3 mutations per division per cell. Later in development, during neurogenesis, the mutation spectrum shifted toward oxidative damage, and the mutation rate increased. Both neurogenesis and early embryogenesis exhibit substantially more mutagenesis than adulthood.


Asunto(s)
Encéfalo/embriología , Gastrulación/genética , Mosaicismo , Mutagénesis , Tasa de Mutación , Neurogénesis/genética , Linaje de la Célula/genética , Genoma Humano , Humanos , Mutación , Neoplasias/genética , Neuronas , Polimorfismo de Nucleótido Simple , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA