Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
PLoS One ; 14(9): e0222528, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31545814

RESUMEN

High Content Analysis (HCA) has become a cornerstone of cellular analysis within the drug discovery industry. To expand the capabilities of HCA, we have applied the same analysis methods, validated in numerous mammalian cell models, to microbiology methodology. Image acquisition and analysis of various microbial samples, ranging from pure cultures to culture mixtures containing up to three different bacterial species, were quantified and identified using various machine learning processes. These HCA techniques allow for faster cell enumeration than standard agar-plating methods, identification of "viable but not plate culturable" microbe phenotype, classification of antibiotic treatment effects, and identification of individual microbial strains in mixed cultures. These methods greatly expand the utility of HCA methods and automate tedious and low-throughput standard microbiological methods.


Asunto(s)
Bacterias/metabolismo , Aprendizaje Automático , Antibacterianos/farmacología , Bacillus megaterium/efectos de los fármacos , Bacillus megaterium/ultraestructura , Bacterias/química , Bacterias/efectos de los fármacos , Proteínas Bacterianas/análisis , Bradyrhizobium/efectos de los fármacos , Bradyrhizobium/crecimiento & desarrollo , Bradyrhizobium/metabolismo , Bradyrhizobium/ultraestructura , Recuento de Colonia Microbiana , Escherichia coli/efectos de los fármacos , Escherichia coli/ultraestructura , Pseudomonas fluorescens/efectos de los fármacos , Pseudomonas fluorescens/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA