Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Epilepsia ; 65(5): 1439-1450, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491959

RESUMEN

OBJECTIVE: YWHAG variant alleles have been associated with a rare disease trait whose clinical synopsis includes an early onset epileptic encephalopathy with predominantly myoclonic seizures, developmental delay/intellectual disability, and facial dysmorphisms. Through description of a large cohort, which doubles the number of reported patients, we further delineate the spectrum of YWHAG-related epilepsy. METHODS: We included in this study 24 patients, 21 new and three previously described, with pathogenic/likely pathogenic variants in YWHAG. We extended the analysis of clinical, electroencephalographic, brain magnetic resonance imaging, and molecular genetic information to 24 previously published patients. RESULTS: The phenotypic spectrum of YWHAG-related disorders ranges from mild developmental delay to developmental and epileptic encephalopathy (DEE). Epilepsy onset is in the first 2 years of life. Seizure freedom can be achieved in half of the patients (13/24, 54%). Intellectual disability (23/24, 96%), behavioral disorders (18/24, 75%), neurological signs (13/24, 54%), and dysmorphisms (6/24, 25%) are common. A genotype-phenotype correlation emerged, as DEE is more represented in patients with missense variants located in the ligand-binding domain than in those with truncating or missense variants in other domains (90% vs. 19%, p < .001). SIGNIFICANCE: This study suggests that pathogenic YWHAG variants cause a wide range of clinical presentations with variable severity, ranging from mild developmental delay to DEE. In this allelic series, a genotype-phenotype correlation begins to emerge, potentially providing prognostic information for clinical management and genetic counseling.


Asunto(s)
Epilepsia , Humanos , Masculino , Femenino , Preescolar , Niño , Adolescente , Epilepsia/genética , Lactante , Electroencefalografía , Discapacidades del Desarrollo/genética , Adulto Joven , Estudios de Asociación Genética , Discapacidad Intelectual/genética , Estudios de Cohortes , Fenotipo , Adulto , Imagen por Resonancia Magnética
2.
J Clin Pathol ; 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433669

RESUMEN

AIMS: Microbial flora of dental plaque trigger innate and adaptive immune responses. The function of antigen-presenting cells (APCs) is to bridge the innate and adaptive immune systems. The human immune system contains three main types of APCs: dendritic cells (DC) (Langerhans cells (LCs) and interstitial DCs, IDCs), macrophages and B lymphocytes. In this study, the distribution and density of all APCs in healthy and inflamed human gingival tissue were comparatively analysed. METHODS: Research was conducted on gingival biopsy specimens obtained from 55 patients and classified in three groups: healthy gingiva (control group, n=10), moderate periodontal disease (PD) (n=21) and severe PD (n=24). For APCs' identification antibodies raised against CD1a (for LCs), S100 protein (for iDCs), CD68 (for macrophages) and CD20 (for B lymphocytes) were used. RESULTS: Increased density of IDCs, macrophages and B lymphocytes in lamina propria and reduced density of LCs in the gingival epithelium were found in patients with periodontitis. Simultaneously, it was noticed an increased concentration of macrophages and B cells in the gingival epithelium in patients with PD. No statistically significant difference in the distribution and density of APC was found among patients with moderate and advanced periodontitis. CONCLUSIONS: It was hypothesised that in the periodontitis the role of antigen presentation was largely taken from LCs by the DCs, macrophages and B cells. These APCs are thought to have less protective and tolerogenic potential than LCs and this is a significant reason for alveolar bone destruction in periodontitis.

3.
Epilepsia ; 64(8): e170-e176, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37114479

RESUMEN

IRF2BPL has recently been described as a novel cause of neurodevelopmental disorders with multisystemic regression, epilepsy, cerebellar symptoms, dysphagia, dystonia, and pyramidal signs. We describe a novel IRF2BPL phenotype consistent with progressive myoclonus epilepsy (PME) in three novel subjects and review the features of the 31 subjects with IRF2BPL-related disorders previously reported. Our three probands, aged 28-40 years, harbored de novo nonsense variants in IRF2BPL (c.370C > T, p.[Gln124*] and c.364C > T; p.[Gln122*], respectively). From late childhood/adolescence, they presented with severe myoclonus epilepsy, stimulus-sensitive myoclonus, and progressive cognitive, speech, and cerebellar impairment, consistent with a typical PME syndrome. The skin biopsy revealed massive intracellular glycogen inclusions in one proband, suggesting a similar pathogenic pathway to other storage disorders. Whereas the two older probands were severely affected, the younger proband had a milder PME phenotype, partially overlapping with some of the previously reported IRF2BPL cases, suggesting that some of them might be unrecognized PME. Interestingly, all three patients harbored protein-truncating variants clustered in a proximal, highly conserved gene region around the "coiled-coil" domain. Our data show that PME can be an additional phenotype within the spectrum of IRF2BPL-related disorders and suggest IRF2BPL as a novel causative gene for PME.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Epilepsias Mioclónicas Progresivas , Mioclonía , Humanos , Niño , Mutación , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas/patología , Familia , Proteínas Portadoras/genética , Proteínas Nucleares/genética
4.
Neurology ; 99(3): e221-e233, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35851549

RESUMEN

BACKGROUND AND OBJECTIVES: Pathogenic STXBP1 variants cause a severe early-onset developmental and epileptic encephalopathy (STXBP1-DEE). We aimed to investigate the natural history of STXBP1-DEE in adults focusing on seizure evolution, the presence of movement disorders, and the level of functional (in)dependence. METHODS: In this observational study, patients with a minimum age of 18 years carrying a (likely) pathogenic STXBP1 variant were recruited through medical genetics departments and epilepsy centers. Treating clinicians completed clinical questionnaires and performed semistructured video examinations while performing tasks from the (modified) Unified Parkinson Disease Rating Scale when possible. RESULTS: Thirty adult patients were included for summary statistics, with video recordings available for 19 patients. The median age at last follow-up was 24 years (range 18-58 years). All patients had epilepsy, with a median onset age of 3.5 months. At last follow-up, 80% of adults had treatment-resistant seizures despite long periods of seizure freedom in 37%. Tonic-clonic, focal, and tonic seizures were most frequent in adults. Epileptic spasms, an unusual feature beyond infancy, were present in 3 adults. All individuals had developmental impairment. Periods of regression were present in 59% and did not always correlate with flare-ups in seizure activity. Eighty-seven percent had severe or profound intellectual disability, 42% had autistic features, and 65% had significant behavioral problems. Video examinations showed gait disorders in all 12 patients able to walk, including postural abnormalities with external rotation of the feet, broad-based gait, and asymmetric posture/dystonia. Tremor, present in 56%, was predominantly of the intention/action type. Stereotypies were seen in 63%. Functional outcome concerning mobility was variable ranging from independent walking (50%) to wheelchair dependence (39%). Seventy-one percent of adults were nonverbal, and all were dependent on caregivers for most activities of daily living. DISCUSSION: STXBP1-DEE warrants continuous monitoring for seizures in adult life. Periods of regression are more frequent than previously established and can occur into adulthood. Movement disorders are often present and involve multiple systems. Although functional mobility is variable in adulthood, STXBP1-DEE frequently leads to severe cognitive impairments and a high level of functional dependence. Understanding the natural history of STXBP1-DEE is important for prognostication and will inform future therapeutic trials.


Asunto(s)
Epilepsia , Trastornos del Movimiento , Proteínas Munc18 , Actividades Cotidianas , Adolescente , Adulto , Electroencefalografía , Humanos , Lactante , Persona de Mediana Edad , Trastornos del Movimiento/genética , Proteínas Munc18/genética , Mutación , Convulsiones/genética , Adulto Joven
5.
Brain ; 145(11): 3816-3831, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35696452

RESUMEN

Brain voltage-gated sodium channel NaV1.1 (SCN1A) loss-of-function variants cause the severe epilepsy Dravet syndrome, as well as milder phenotypes associated with genetic epilepsy with febrile seizures plus. Gain of function SCN1A variants are associated with familial hemiplegic migraine type 3. Novel SCN1A-related phenotypes have been described including early infantile developmental and epileptic encephalopathy with movement disorder, and more recently neonatal presentations with arthrogryposis. Here we describe the clinical, genetic and functional evaluation of affected individuals. Thirty-five patients were ascertained via an international collaborative network using a structured clinical questionnaire and from the literature. We performed whole-cell voltage-clamp electrophysiological recordings comparing sodium channels containing wild-type versus variant NaV1.1 subunits. Findings were related to Dravet syndrome and familial hemiplegic migraine type 3 variants. We identified three distinct clinical presentations differing by age at onset and presence of arthrogryposis and/or movement disorder. The most severely affected infants (n = 13) presented with congenital arthrogryposis, neonatal onset epilepsy in the first 3 days of life, tonic seizures and apnoeas, accompanied by a significant movement disorder and profound intellectual disability. Twenty-one patients presented later, between 2 weeks and 3 months of age, with a severe early infantile developmental and epileptic encephalopathy and a movement disorder. One patient presented after 3 months with developmental and epileptic encephalopathy only. Associated SCN1A variants cluster in regions of channel inactivation associated with gain of function, different to Dravet syndrome variants (odds ratio = 17.8; confidence interval = 5.4-69.3; P = 1.3 × 10-7). Functional studies of both epilepsy and familial hemiplegic migraine type 3 variants reveal alterations of gating properties in keeping with neuronal hyperexcitability. While epilepsy variants result in a moderate increase in action current amplitude consistent with mild gain of function, familial hemiplegic migraine type 3 variants induce a larger effect on gating properties, in particular the increase of persistent current, resulting in a large increase of action current amplitude, consistent with stronger gain of function. Clinically, 13 out of 16 (81%) gain of function variants were associated with a reduction in seizures in response to sodium channel blocker treatment (carbamazepine, oxcarbazepine, phenytoin, lamotrigine or lacosamide) without evidence of symptom exacerbation. Our study expands the spectrum of gain of function SCN1A-related epilepsy phenotypes, defines key clinical features, provides novel insights into the underlying disease mechanisms between SCN1A-related epilepsy and familial hemiplegic migraine type 3, and identifies sodium channel blockers as potentially efficacious therapies. Gain of function disease should be considered in early onset epilepsies with a pathogenic SCN1A variant and non-Dravet syndrome phenotype.


Asunto(s)
Artrogriposis , Epilepsias Mioclónicas , Epilepsia , Migraña con Aura , Trastornos del Movimiento , Espasmos Infantiles , Humanos , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/diagnóstico , Epilepsia/genética , Epilepsia/diagnóstico , Mutación con Ganancia de Función , Canal de Sodio Activado por Voltaje NAV1.1/genética , Fenotipo , Recién Nacido , Lactante
6.
J Oral Sci ; 64(3): 228-231, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35661645

RESUMEN

PURPOSE: This study evaluated the cytotoxic effects of polymethyl methacrylate resin extracts on rat macrophage viability in in vitro conditions. METHODS: Prepared test specimens were immersed in 5 mL of artificial saliva and incubated for 24, 48, and 72 h at 37°C. The cytotoxicity of the obtained solutions of extracted resins, used as a stock solution (100%) and diluted with Roswell Park Memorial Institute (RPMI) medium to obtain the working solutions (50, 40, 30, 20, 10, and 5%), was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS: No dose-dependent toxic activity in macrophage culture was detected for the three types of extracts obtained after 24, 48, and 72 h of material extraction. The shortest extraction of material was found to be completely non-toxic, and the 20% concentration of this extract obtained caused a significant increase in cell ability to metabolize MTT. Extracts obtained after 72 h of extraction showed the highest cytotoxic potential of 50%, 40% and 30%, and extracts obtained after 48 and 72 h of extraction at concentrations of 5% and 10% had a proliferative effect on the macrophage cell line. CONCLUSION: This study demonstrated that the highest cytotoxic effect was observed in cells exposed to the highest concentrations (50, 40, and 30%) of the extracts that were extracted for 72 h.


Asunto(s)
Materiales Dentales , Polimetil Metacrilato , Animales , Macrófagos , Polimetil Metacrilato/toxicidad , Ratas , Saliva Artificial
7.
Brain ; 145(8): 2687-2703, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35675510

RESUMEN

Vacuolar-type H+-ATPase (V-ATPase) is a multimeric complex present in a variety of cellular membranes that acts as an ATP-dependent proton pump and plays a key role in pH homeostasis and intracellular signalling pathways. In humans, 22 autosomal genes encode for a redundant set of subunits allowing the composition of diverse V-ATPase complexes with specific properties and expression. Sixteen subunits have been linked to human disease. Here we describe 26 patients harbouring 20 distinct pathogenic de novo missense ATP6V1A variants, mainly clustering within the ATP synthase α/ß family-nucleotide-binding domain. At a mean age of 7 years (extremes: 6 weeks, youngest deceased patient to 22 years, oldest patient) clinical pictures included early lethal encephalopathies with rapidly progressive massive brain atrophy, severe developmental epileptic encephalopathies and static intellectual disability with epilepsy. The first clinical manifestation was early hypotonia, in 70%; 81% developed epilepsy, manifested as developmental epileptic encephalopathies in 58% of the cohort and with infantile spasms in 62%; 63% of developmental epileptic encephalopathies failed to achieve any developmental, communicative or motor skills. Less severe outcomes were observed in 23% of patients who, at a mean age of 10 years and 6 months, exhibited moderate intellectual disability, with independent walking and variable epilepsy. None of the patients developed communicative language. Microcephaly (38%) and amelogenesis imperfecta/enamel dysplasia (42%) were additional clinical features. Brain MRI demonstrated hypomyelination and generalized atrophy in 68%. Atrophy was progressive in all eight individuals undergoing repeated MRIs. Fibroblasts of two patients with developmental epileptic encephalopathies showed decreased LAMP1 expression, Lysotracker staining and increased organelle pH, consistent with lysosomal impairment and loss of V-ATPase function. Fibroblasts of two patients with milder disease, exhibited a different phenotype with increased Lysotracker staining, decreased organelle pH and no significant modification in LAMP1 expression. Quantification of substrates for lysosomal enzymes in cellular extracts from four patients revealed discrete accumulation. Transmission electron microscopy of fibroblasts of four patients with variable severity and of induced pluripotent stem cell-derived neurons from two patients with developmental epileptic encephalopathies showed electron-dense inclusions, lipid droplets, osmiophilic material and lamellated membrane structures resembling phospholipids. Quantitative assessment in induced pluripotent stem cell-derived neurons identified significantly smaller lysosomes. ATP6V1A-related encephalopathy represents a new paradigm among lysosomal disorders. It results from a dysfunctional endo-lysosomal membrane protein causing altered pH homeostasis. Its pathophysiology implies intracellular accumulation of substrates whose composition remains unclear, and a combination of developmental brain abnormalities and neurodegenerative changes established during prenatal and early postanal development, whose severity is variably determined by specific pathogenic variants.


Asunto(s)
Encefalopatías , Epilepsia , Discapacidad Intelectual , Espasmos Infantiles , ATPasas de Translocación de Protón Vacuolares , Adenosina Trifosfato , Atrofia , Niño , Homeostasis , Humanos , Lactante , Lisosomas , Fenotipo
8.
Epileptic Disord ; 24(3): 577-582, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35770758

RESUMEN

We report the association, not previously described, between trisomy 20/ monosomy 18 and congenital bilateral perisylvian syndrome (CBPS), a condition featuring intellectual disability, epilepsy, oro-motor dysfunction and bilateral perisylvian polymicrogyria (BPP) in a 29-year-old individual. Detailed clinical evaluation, long-term EEG and EEG analysis by means of electrical source imaging (ESI), 3T MRI and array-CGH were performed. Clinical examination showed moderate/severe intellectual disability, dysmorphic features, oro-motor dysfunction, short stature, abnormal hands and feet, bradykinesia and abnormal posture. The patient had suffered from drug-resistant epilepsy since infancy. Brain MRI showed that BPP was consistent with CBPS. Additional imaging features revealed corpus callosum and cerebellar hypoplasia and fusion of the C1-C2 vertebrae. Ictal EEG and ESI documented tonic seizures originating from the right polymicrogyric cortex. Facial gestalt included dysmorphic features reported in patients with 18- and 20+ chromosomal rearrangements. Array-CGH showed an unbalanced translocation, arr(18p)x1(20p)x3. In conclusion, we provide a detailed electro-clinical and MRI description of a novel condition characterized by the association between trisomy 20p/monosomy 18p and CBPS, also illustrating its clinical evolution into adulthood. This information may help paediatricians, neurologists and geneticists to better counsel families about the developmental prognosis of this rare unbalanced chromosomal rearrangement.


Asunto(s)
Anomalías Múltiples , Trastornos de los Cromosomas , Epilepsia , Discapacidad Intelectual , Malformaciones del Desarrollo Cortical , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Adulto , Deleción Cromosómica , Cromosomas Humanos Par 18 , Cromosomas Humanos Par 20 , Epilepsia/diagnóstico , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Malformaciones del Desarrollo Cortical/diagnóstico , Malformaciones del Desarrollo Cortical/genética , Monosomía , Trisomía
9.
Sci Transl Med ; 13(609): eaaz4957, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34516822

RESUMEN

Developmental and epileptic encephalopathies are devastating disorders characterized by epilepsy, intellectual disability, and other neuropsychiatric symptoms, for which available treatments are largely ineffective. Following a precision medicine approach, we show for KCNA2-encephalopathy that the K+ channel blocker 4-aminopyridine can antagonize gain-of-function defects caused by variants in the KV1.2 subunit in vitro, by reducing current amplitudes and negative shifts of steady-state activation and increasing the firing rate of transfected neurons. In n-of-1 trials carried out in nine different centers, 9 of 11 patients carrying such variants benefitted from treatment with 4-aminopyridine. All six patients experiencing daily absence, myoclonic, or atonic seizures became seizure-free (except some remaining provoked seizures). Two of six patients experiencing generalized tonic-clonic seizures showed marked improvement, three showed no effect, and one worsening. Nine patients showed improved gait, ataxia, alertness, cognition, or speech. 4-Aminopyridine was well tolerated up to 2.6 mg/kg per day. We suggest 4-aminopyridine as a promising tailored treatment in KCNA2-(gain-of-function)­encephalopathy and provide an online tool assisting physicians to select patients with gain-of-function mutations suited to this treatment.


Asunto(s)
Encefalopatías , Epilepsia , 4-Aminopiridina/uso terapéutico , Mutación con Ganancia de Función , Humanos , Canal de Potasio Kv.1.2/genética , Mutación
10.
Epilepsia ; 61(6): 1234-1239, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32427350

RESUMEN

OBJECTIVE: Genetic testing has become a routine part of the diagnostic workup in children with early onset epilepsies. In the present study, we sought to investigate a cohort of adult patients with epilepsy, to determinate the diagnostic yield and explore the gain of personalized treatment approaches in adult patients. METHODS: Two hundred patients (age span = 18-80 years) referred for diagnostic gene panel testing at the Danish Epilepsy Center were included. The vast majority (91%) suffered from comorbid intellectual disability. The medical records of genetically diagnosed patients were mined for data on epilepsy syndrome, cognition, treatment changes, and seizure outcome following the genetic diagnosis. RESULTS: We found a genetic diagnosis in 46 of 200 (23%) patients. SCN1A, KCNT1, and STXBP1 accounted for the greatest number of positive findings (48%). More rare genetic findings included SLC2A1, ATP6A1V, HNRNPU, MEF2C, and IRF2BPL. Gene-specific treatment changes were initiated in 11 of 46 (17%) patients (one with SLC2A1, 10 with SCN1A) following the genetic diagnosis. Ten patients improved, with seizure reduction and/or increased alertness and general well-being. SIGNIFICANCE: With this study, we show that routine diagnostic testing is highly relevant in adults with epilepsy. The diagnostic yield is similar to previously reported pediatric cohorts, and the genetic findings can be useful for therapeutic decision-making, which may lead to better seizure control, ultimately improving quality of life.


Asunto(s)
Toma de Decisiones Clínicas/métodos , Epilepsia/diagnóstico , Epilepsia/genética , Pruebas Genéticas/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Dinamarca/epidemiología , Epilepsia/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Canal de Sodio Activado por Voltaje NAV1.1/genética , Proteínas del Tejido Nervioso/genética , Canales de potasio activados por Sodio/genética , Adulto Joven
11.
Brain ; 142(10): 3009-3027, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504254

RESUMEN

N-methyl d-aspartate receptors are ligand-gated ionotropic receptors mediating a slow, calcium-permeable component of excitatory synaptic transmission in the CNS. Variants in genes encoding NMDAR subunits have been associated with a spectrum of neurodevelopmental disorders. Here we report six novel GRIN2D variants and one previously-described disease-associated GRIN2D variant in two patients with developmental and epileptic encephalopathy. GRIN2D encodes for the GluN2D subunit protein; the GluN2D amino acids affected by the variants in this report are located in the pre-M1 helix, transmembrane domain M3, and the intracellular carboxyl terminal domain. Functional analysis in vitro reveals that all six variants decreased receptor surface expression, which may underline some shared clinical symptoms. In addition the GluN2D(Leu670Phe), (Ala675Thr) and (Ala678Asp) substitutions confer significantly enhanced agonist potency, and/or increased channel open probability, while the GluN2D(Ser573Phe), (Ser1271Phe) and (Arg1313Trp) substitutions result in a mild increase of agonist potency, reduced sensitivity to endogenous protons, and decreased channel open probability. The GluN2D(Ser573Phe), (Ala675Thr), and (Ala678Asp) substitutions significantly decrease current amplitude, consistent with reduced surface expression. The GluN2D(Leu670Phe) variant slows current response deactivation time course and increased charge transfer. GluN2D(Ala678Asp) transfection significantly decreased cell viability of rat cultured cortical neurons. In addition, we evaluated a set of FDA-approved NMDAR channel blockers to rescue functional changes of mutant receptors. This work suggests the complexity of the pathological mechanisms of GRIN2D-mediated developmental and epileptic encephalopathy, as well as the potential benefit of precision medicine.


Asunto(s)
Epilepsia Generalizada/genética , Receptores de N-Metil-D-Aspartato/genética , Adulto , Secuencia de Aminoácidos/genética , Animales , Niño , Preescolar , Epilepsia Generalizada/fisiopatología , Femenino , Regulación de la Expresión Génica/genética , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Masculino , Neuronas/metabolismo , Polimorfismo de Nucleótido Simple/genética , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/genética
12.
Genet Med ; 21(4): 837-849, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30206421

RESUMEN

PURPOSE: Variants in IQSEC2, escaping X inactivation, cause X-linked intellectual disability with frequent epilepsy in males and females. We aimed to investigate sex-specific differences. METHODS: We collected the data of 37 unpublished patients (18 males and 19 females) with IQSEC2 pathogenic variants and 5 individuals with variants of unknown significance and reviewed published variants. We compared variant types and phenotypes in males and females and performed an analysis of IQSEC2 isoforms. RESULTS: IQSEC2 pathogenic variants mainly led to premature truncation and were scattered throughout the longest brain-specific isoform, encoding the synaptic IQSEC2/BRAG1 protein. Variants occurred de novo in females but were either de novo (2/3) or inherited (1/3) in males, with missense variants being predominantly inherited. Developmental delay and intellectual disability were overall more severe in males than in females. Likewise, seizures were more frequently observed and intractable, and started earlier in males than in females. No correlation was observed between the age at seizure onset and severity of intellectual disability or resistance to antiepileptic treatments. CONCLUSION: This study provides a comprehensive overview of IQSEC2-related encephalopathy in males and females, and suggests that an accurate dosage of IQSEC2 at the synapse is crucial during normal brain development.


Asunto(s)
Encefalopatías/genética , Factores de Intercambio de Guanina Nucleótido/genética , Discapacidad Intelectual/genética , Convulsiones/genética , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encefalopatías/epidemiología , Encefalopatías/fisiopatología , Femenino , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/fisiopatología , Masculino , Mutación , Linaje , Fenotipo , Isoformas de Proteínas/genética , Convulsiones/epidemiología , Convulsiones/fisiopatología , Caracteres Sexuales
14.
Ann Neurol ; 83(5): 926-934, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29630738

RESUMEN

OBJECTIVE: Cut homeodomain transcription factor CUX2 plays an important role in dendrite branching, spine development, and synapse formation in layer II to III neurons of the cerebral cortex. We identify a recurrent de novo CUX2 p.Glu590Lys as a novel genetic cause for developmental and epileptic encephalopathy (DEE). METHODS: The de novo p.Glu590Lys variant was identified by whole-exome sequencing (n = 5) or targeted gene panel (n = 4). We performed electroclinical and imaging phenotyping on all patients. RESULTS: The cohort comprised 7 males and 2 females. Mean age at study was 13 years (0.5-21.0). Median age at seizure onset was 6 months (2 months to 9 years). Seizure types at onset were myoclonic, atypical absence with myoclonic components, and focal seizures. Epileptiform activity on electroencephalogram was seen in 8 cases: generalized polyspike-wave (6) or multifocal discharges (2). Seizures were drug resistant in 7 or controlled with valproate (2). Six patients had a DEE: myoclonic DEE (3), Lennox-Gastaut syndrome (2), and West syndrome (1). Two had a static encephalopathy and genetic generalized epilepsy, including absence epilepsy in 1. One infant had multifocal epilepsy. Eight had severe cognitive impairment, with autistic features in 6. The p.Glu590Lys variant affects a highly conserved glutamine residue in the CUT domain predicted to interfere with CUX2 binding to DNA targets during neuronal development. INTERPRETATION: Patients with CUX2 p.Glu590Lys display a distinctive phenotypic spectrum, which is predominantly generalized epilepsy, with infantile-onset myoclonic DEE at the severe end and generalized epilepsy with severe static developmental encephalopathy at the milder end of the spectrum. Ann Neurol 2018;83:926-934.


Asunto(s)
Epilepsias Mioclónicas/genética , Proteínas de Homeodominio/genética , Fenotipo , Convulsiones/genética , Adolescente , Niño , Proteínas de Unión al ADN/genética , Bases de Datos Genéticas , Electroencefalografía/métodos , Epilepsia Tipo Ausencia/genética , Femenino , Humanos , Lactante , Masculino , Adulto Joven
15.
Brain ; 140(9): 2337-2354, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29050392

RESUMEN

Recently, de novo mutations in the gene KCNA2, causing either a dominant-negative loss-of-function or a gain-of-function of the voltage-gated K+ channel Kv1.2, were described to cause a new molecular entity within the epileptic encephalopathies. Here, we report a cohort of 23 patients (eight previously described) with epileptic encephalopathy carrying either novel or known KCNA2 mutations, with the aim to detail the clinical phenotype associated with each of them, to characterize the functional effects of the newly identified mutations, and to assess genotype-phenotype associations. We identified five novel and confirmed six known mutations, three of which recurred in three, five and seven patients, respectively. Ten mutations were missense and one was a truncation mutation; de novo occurrence could be shown in 20 patients. Functional studies using a Xenopus oocyte two-microelectrode voltage clamp system revealed mutations with only loss-of-function effects (mostly dominant-negative current amplitude reduction) in eight patients or only gain-of-function effects (hyperpolarizing shift of voltage-dependent activation, increased amplitude) in nine patients. In six patients, the gain-of-function was diminished by an additional loss-of-function (gain-and loss-of-function) due to a hyperpolarizing shift of voltage-dependent activation combined with either decreased amplitudes or an additional hyperpolarizing shift of the inactivation curve. These electrophysiological findings correlated with distinct phenotypic features. The main differences were (i) predominant focal (loss-of-function) versus generalized (gain-of-function) seizures and corresponding epileptic discharges with prominent sleep activation in most cases with loss-of-function mutations; (ii) more severe epilepsy, developmental problems and ataxia, and atrophy of the cerebellum or even the whole brain in about half of the patients with gain-of-function mutations; and (iii) most severe early-onset phenotypes, occasionally with neonatal onset epilepsy and developmental impairment, as well as generalized and focal seizures and EEG abnormalities for patients with gain- and loss-of-function mutations. Our study thus indicates well represented genotype-phenotype associations between three subgroups of patients with KCNA2 encephalopathy according to the electrophysiological features of the mutations.


Asunto(s)
Encefalopatías/diagnóstico , Encefalopatías/genética , Epilepsia/diagnóstico , Canal de Potasio Kv.1.2/genética , Animales , Encefalopatías/complicaciones , Epilepsia/complicaciones , Epilepsia/genética , Estudios de Asociación Genética , Mutación , Oocitos/fisiología , Fenotipo , Xenopus
16.
Mol Syndromol ; 7(4): 210-219, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27781031

RESUMEN

In recent years, several genes have been causally associated with epilepsy. However, making a genetic diagnosis in a patient can still be difficult, since extensive phenotypic and genetic heterogeneity has been observed in many monogenic epilepsies. This study aimed to analyze the genetic basis of a wide spectrum of epilepsies with age of onset spanning from the neonatal period to adulthood. A gene panel targeting 46 epilepsy genes was used on a cohort of 216 patients consecutively referred for panel testing. The patients had a range of different epilepsies from benign neonatal seizures to epileptic encephalopathies (EEs). Potentially causative variants were evaluated by literature and database searches, submitted to bioinformatic prediction algorithms, and validated by Sanger sequencing. If possible, parents were included for segregation analysis. We identified a presumed disease-causing variant in 49 (23%) of the 216 patients. The variants were found in 19 different genes including SCN1A, STXBP1, CDKL5, SCN2A, SCN8A, GABRA1, KCNA2, and STX1B. Patients with neonatal-onset epilepsies had the highest rate of positive findings (57%). The overall yield for patients with EEs was 32%, compared to 17% among patients with generalized epilepsies and 16% in patients with focal or multifocal epilepsies. By the use of a gene panel consisting of 46 epilepsy genes, we were able to find a disease-causing genetic variation in 23% of the analyzed patients. The highest yield was found among patients with neonatal-onset epilepsies and EEs.

17.
Vojnosanit Pregl ; 73(5): 458-62, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27430110

RESUMEN

BACKGROUND/AIM: Mast cells are mononuclear cells originating from bone marrow. They produce various biologically active substances, which allow them to actively participate in immune and inflammatory processes associated with periodontal disease. The study focused on distribution and density of mast cells in healthy gingiva as well as in different stages of periodontal disease. METHODS: The material used for this purpose was gingival biopsies taken from 96 patients classified into 4 groups: healthy gingiva, gingivitis, initial and severe periodontal disease. Toluidine blue staining according to Spicer was utilized for identifying mast cells. RESULTS: Basing on our study, the density of mast cells in the gingival tissue increases with the progression of the infection, which means they are more numerous in gingivitis compared to healthy gingiva, as well as in periodontal disease compared to gingivitis. CONCLUSION: Increase in the number of mast cells in the infected gingiva can be correlated with an increased influx of inflammatory cells from blood circulation into the gingival stroma, as well as with the collagen lysis, since these cells produce substances with collagenolytic potential. Based on the distribution of mast cells, it could be concluded that in the evolution of periodontal disease there are significant dynamic alterations in migration and localization of these cells.


Asunto(s)
Gingivitis/inmunología , Mastocitos/inmunología , Periodontitis/inmunología , Adolescente , Adulto , Anciano , Biopsia , Recuento de Células , Femenino , Gingivitis/patología , Humanos , Masculino , Mastocitos/citología , Persona de Mediana Edad , Enfermedades Periodontales/inmunología , Enfermedades Periodontales/patología , Periodontitis/patología , Índice de Severidad de la Enfermedad , Adulto Joven
18.
Ugeskr Laeger ; 175(5): 285-6, 2013 Jan 28.
Artículo en Danés | MEDLINE | ID: mdl-23369332

RESUMEN

Cerebrotendinous xanthomatosis (CTX) is a rare, but treatable lipid storage disorder caused by mutation in the CYP27A1 gene. The disorder results in deposition of cholestanol in various tissues. The classical CTX phenotype includes diarrhoea, juvenile cataract, xanthoma and progressive neurological symptoms. Studies have shown that progression of symptoms can be halted or even reversed, if treatment with chenodeoxycholic acid is initiated early. The diagnosis of CTX is often delayed due to lack of awareness of the disease. We describe the history, clinical features, biochemical, genetic and magnetic resonance imaging findings of the first reported case of CTX in Denmark.


Asunto(s)
Xantomatosis Cerebrotendinosa , Adulto , Ácido Quenodesoxicólico/administración & dosificación , Ácido Quenodesoxicólico/uso terapéutico , Diagnóstico Tardío , Femenino , Humanos , Hidroxicolesteroles/sangre , Imagen por Resonancia Magnética/métodos , Fenotipo , Enfermedades Raras , Resultado del Tratamiento , Xantomatosis Cerebrotendinosa/complicaciones , Xantomatosis Cerebrotendinosa/diagnóstico , Xantomatosis Cerebrotendinosa/tratamiento farmacológico , Xantomatosis Cerebrotendinosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA