Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Ann Rheum Dis ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38986577

RESUMEN

OBJECTIVES: Bone remodelling is a highly dynamic process dependent on the precise coordination of osteoblasts and haematopoietic-cell derived osteoclasts. Changes in core metabolic pathways during osteoclastogenesis, however, are largely unexplored and it is unknown whether and how these processes are involved in bone homeostasis. METHODS: We metabolically and transcriptionally profiled cells during osteoclast and osteoblast generation. Individual gene expression was characterised by quantitative PCR and western blot. Osteoblast function was assessed by Alizarin red staining. immunoresponsive gene 1 (Irg1)-deficient mice were used in various inflammatory or non-inflammatory models of bone loss. Tissue gene expression was analysed by RNA in situ hybridisation. RESULTS: We show that during differentiation preosteoclasts rearrange their tricarboxylic acid cycle, a process crucially depending on both glucose and glutamine. This rearrangement is characterised by the induction of Irg1 and production of itaconate, which accumulates intracellularly and extracellularly. While the IRG1-itaconate axis is dispensable for osteoclast generation in vitro and in vivo, we demonstrate that itaconate stimulates osteoblasts by accelerating osteogenic differentiation in both human and murine cells. This enhanced osteogenic differentiation is accompanied by reduced proliferation and altered metabolism. Additionally, supplementation of itaconate increases bone formation by boosting osteoblast activity in mice. Conversely, Irg1-deficient mice exhibit decreased bone mass and have reduced osteoproliferative lesions in experimental arthritis. CONCLUSION: In summary, we identify itaconate, generated as a result of the metabolic rewiring during osteoclast differentiation, as a previously unrecognised regulator of osteoblasts.

2.
Polymers (Basel) ; 16(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38475341

RESUMEN

Additive and lithographic manufacturing technologies using photopolymerisation provide a powerful tool for fabricating multiscale structures, which is especially interesting for biomimetic scaffolds and biointerfaces. However, most resins are tailored to one particular fabrication technology, showing drawbacks for versatile use. Hence, we used a resin based on thiol-ene chemistry, leveraging its numerous advantages such as low oxygen inhibition, minimal shrinkage and high monomer conversion. The resin is tailored to applications in additive and lithographic technologies for future biofabrication where fast curing kinetics in the presence of oxygen are required, namely 3D inkjet printing, digital light processing and nanoimprint lithography. These technologies enable us to fabricate scaffolds over a span of six orders of magnitude with a maximum of 10 mm and a minimum of 150 nm in height, including bioinspired porous structures with controlled architecture, hole-patterned plates and micro/submicro patterned surfaces. Such versatile properties, combined with noncytotoxicity, degradability and the commercial availability of all the components render the resin as a prototyping material for tissue engineers.

3.
Front Bioeng Biotechnol ; 11: 1214019, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600321

RESUMEN

Regeneration of bone defects is often limited due to compromised bone tissue physiology. Previous studies suggest that engineered extracellular matrices enhance the regenerative capacity of mesenchymal stromal cells. In this study, we used human-induced pluripotent stem cells, a scalable source of young mesenchymal progenitors (hiPSC-MPs), to generate extracellular matrix (iECM) and test its effects on the osteogenic capacity of human bone-marrow mesenchymal stromal cells (BMSCs). iECM was deposited as a layer on cell culture dishes and into three-dimensional (3D) silk-based spongy scaffolds. After decellularization, iECM maintained inherent structural proteins including collagens, fibronectin and laminin, and contained minimal residual DNA. Young adult and aged BMSCs cultured on the iECM layer in osteogenic medium exhibited a significant increase in proliferation, osteogenic marker expression, and mineralization as compared to tissue culture plastic. With BMSCs from aged donors, matrix mineralization was only detected when cultured on iECM, but not on tissue culture plastic. When cultured in 3D iECM/silk scaffolds, BMSCs exhibited significantly increased osteogenic gene expression levels and bone matrix deposition. iECM layer showed a similar enhancement of aged BMSC proliferation, osteogenic gene expression, and mineralization compared with extracellular matrix layers derived from young adult or aged BMSCs. However, iECM increased osteogenic differentiation and decreased adipocyte formation compared with single protein substrates including collagen and fibronectin. Together, our data suggest that the microenvironment comprised of iECM can enhance the osteogenic activity of BMSCs, providing a bioactive and scalable biomaterial strategy for enhancing bone regeneration in patients with delayed or failed bone healing.

4.
Cells ; 11(19)2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36231032

RESUMEN

Bone grafts can be engineered by differentiating human mesenchymal stromal cells (MSCs) via the endochondral and intramembranous ossification pathways. We evaluated the effects of each pathway on the properties of engineered bone grafts and their capacity to drive bone regeneration. Bone-marrow-derived MSCs were differentiated on silk scaffolds into either hypertrophic chondrocytes (hyper) or osteoblasts (osteo) over 5 weeks of in vitro cultivation, and were implanted subcutaneously for 12 weeks. The pathways' constructs were evaluated over time with respect to gene expression, composition, histomorphology, microstructure, vascularization and biomechanics. Hypertrophic chondrocytes expressed higher levels of osteogenic genes and deposited significantly more bone mineral and proteins than the osteoblasts. Before implantation, the mineral in the hyper group was less mature than that in the osteo group. Following 12 weeks of implantation, the hyper group had increased mineral density but a similar overall mineral composition compared with the osteo group. The hyper group also displayed significantly more blood vessel infiltration than the osteo group. Both groups contained M2 macrophages, indicating bone regeneration. These data suggest that, similar to the body's repair processes, endochondral pathway might be more advantageous when regenerating large defects, whereas intramembranous ossification could be utilized to guide the tissue formation pattern with a scaffold architecture.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Huesos , Humanos , Células Madre Mesenquimatosas/metabolismo , Neovascularización Patológica/metabolismo , Seda/farmacología , Ingeniería de Tejidos/métodos
5.
Mech Ageing Dev ; 198: 111539, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34242668

RESUMEN

The most common clinical manifestations of age-related musculoskeletal degeneration are osteoarthritis and osteoporosis, and these represent an enormous burden on modern society. Mesenchymal stromal cells (MSCs) have pivotal roles in musculoskeletal tissue development. In adult organisms, MSCs retain their ability to regenerate tissues following bone fractures, articular cartilage injuries, and other traumatic injuries of connective tissue. However, their remarkable regenerative ability appears to be impaired through aging, and in particular in age-related diseases of bones and joints. Here, we review age-related alterations of MSCs in musculoskeletal tissues, and address the underlying mechanisms of aging and senescence of MSCs. Furthermore, we focus on the properties of MSCs in osteoarthritis and osteoporosis, and how their changes contribute to onset and progression of these disorders. Finally, we consider current treatments that exploit the enormous potential of MSCs for tissue regeneration, as well as for innovative cell-free extracellular-vesicle-based and anti-aging treatment approaches.


Asunto(s)
Huesos , Cartílago Articular , Senescencia Celular/fisiología , Células Madre Mesenquimatosas/fisiología , Enfermedades Musculoesqueléticas , Osteoporosis , Regeneración/fisiología , Huesos/lesiones , Huesos/fisiología , Cartílago Articular/lesiones , Cartílago Articular/fisiología , Sistema Libre de Células , Humanos , Enfermedades Musculoesqueléticas/patología , Enfermedades Musculoesqueléticas/terapia , Osteoporosis/patología , Osteoporosis/terapia
6.
Pharmaceutics ; 13(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374729

RESUMEN

Reactive oxygen species (ROS) have recently been recognized as important signal transducers, particularly regulating proliferation and differentiation of cells. Diphenyleneiodonium (DPI) is known as an inhibitor of the nicotinamide adenine dinucleotide phosphate oxidase (NOX) and is also affecting mitochondrial function. The aim of this study was to investigate the effect of DPI on ROS metabolism and mitochondrial function in human amniotic membrane mesenchymal stromal cells (hAMSCs), human bone marrow mesenchymal stromal cells (hBMSCs), hBMSCs induced into osteoblast-like cells, and osteosarcoma cell line MG-63. Our data suggested a combination of a membrane potential sensitive fluorescent dye, tetramethylrhodamine methyl ester (TMRM), and a ROS-sensitive dye, CM-H2DCFDA, combined with a pretreatment with mitochondria-targeted ROS scavenger MitoTEMPO as a good tool to examine effects of DPI. We observed critical differences in ROS metabolism between hAMSCs, hBMSCs, osteoblast-like cells, and MG-63 cells, which were linked to energy metabolism. In cell types using predominantly glycolysis as the energy source, such as hAMSCs, DPI predominantly interacted with NOX, and it was not toxic for the cells. In hBMSCs, the ROS turnover was influenced by NOX activity rather than by the mitochondria. In cells with aerobic metabolism, such as MG 63, the mitochondria became an additional target for DPI, and these cells were prone to the toxic effects of DPI. In summary, our data suggest that undifferentiated cells rather than differentiated parenchymal cells should be considered as potential targets for DPI.

7.
Mater Sci Eng C Mater Biol Appl ; 111: 110775, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32279758

RESUMEN

Template-mediated self-assembly synthesis has produced a diverse range of biomimetic materials with unique physicochemical properties. Here, we fabricated novel fluorescent three-dimensional (3-D) hydroxyapatite (HAP) nanorod-assembled microspheres using iron quantum cluster (FeQC) as a hybrid template, containing three organic components: hemoglobin chains, piperidine, and iron clusters. The material characterization indicated that the synthesized HAP possessed a uniform rod-like morphology, ordered 3-D architecture, high crystallinity, self-activated fluorescence, and remarkable photostability. Our study proposed that this FeQC template is a promising regulating agent to fabricate fluorescent self-assembled HAP microspheres with a controlled morphology. The effect of HAP on stem cell fate and their osteogenic differentiation was investigated by culturing human bone marrow-derived mesenchymal stromal/stem cells (BMSCs) with HAP microspheres. Significant increases in collagen matrix production and gene expression of osteogenic markers, including osteocalcin (OCN), Runt-related transcription factor 2 (Runx2), bone sialoprotein (BSP) and alkaline phosphatase (ALP), were observed compared to the controls after 21 days of culture. Taken together, our data suggest that synthetic HAP nanorod-assembled microspheres represent a promising new biomaterial which exhibits enhanced fluorescent properties and osteoinductive effects on human BMSCs.


Asunto(s)
Materiales Biocompatibles/química , Durapatita/química , Hierro/química , Puntos Cuánticos/química , Fosfatasa Alcalina/metabolismo , Materiales Biocompatibles/farmacología , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colágeno/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Colorantes Fluorescentes/química , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Microesferas , Osteocalcina/metabolismo , Osteogénesis/efectos de los fármacos
8.
Stem Cell Res Ther ; 11(1): 146, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245507

RESUMEN

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) can replenish the aged cells of the musculoskeletal system in adult life. Stem cell exhaustion and decrease in their regenerative potential have been suggested to be hallmarks of aging. Here, we investigated whether muscle- and bone-derived MSCs of patients with osteoarthritis and osteoporosis are affected by this exhaustion, compared to healthy donors. METHODS: Patients with primary osteoarthritis, femoral neck fractures due to osteoporosis, and healthy donors (controls) were included. MSCs were isolated from the skeletal muscle and subchondral bone from each patient and compared using ex vivo and in vitro analyses, including immunophenotyping, colony-forming unit fibroblast assays, growth kinetics, cell senescence, multilineage potential, and MSC marker gene expression profiling. RESULTS: Freshly isolated cells from muscle from patients with osteoarthritis showed a lower proportion of CD45/CD19/CD14/CD34-negative cells compared to patients with osteoporosis and healthy donors. Freshly isolated muscle cells from patients with osteoarthritis and osteoporosis also showed higher clonogenicity compared to healthy donors. MSCs from both tissues of osteoarthritis patients showed significantly reduced osteogenesis and MSCs from the bone also reduced adipogenesis. Chondrogenic pellet diameter was reduced in bone-derived MSCs from both patient groups compared to healthy donors. A significant positive correlation was observed between adipogenesis and CD271 expression in muscle-derived MSCs. CD73 was significantly lower in bone-derived MSCs from osteoarthritis patients, compared to osteoporosis patients. Gene expression profiling showed significantly lower expression of MSC marker gene leptin receptor, LEPR, previously identified as the major source of the bone and adipocytes in the adult bone marrow, in bone-derived MSCs from patients with osteoarthritis in comparison with osteoporotic patients and healthy donors. CONCLUSIONS: Our results show deficient ex vivo and in vitro properties of both skeletal muscle- and bone-derived MSCs in osteoarthritis and osteoporosis patients, compared to healthy donors. In bone-derived MSCs from patients with osteoarthritis, we also identified a lower expression of the leptin receptor, a marker of MSCs that present a major source of MSCs in the adult bone marrow. This suggests that exhaustion of skeletal muscle- and bone-derived MSCs is a hallmark of osteoarthritis and osteoporosis, which defines the need for further clinical trials of stem cell transplantation in these patients.


Asunto(s)
Fracturas del Cuello Femoral , Células Madre Mesenquimatosas , Osteoartritis , Adulto , Anciano , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Humanos , Músculo Esquelético , Osteogénesis
9.
Stem Cell Rev Rep ; 16(4): 742-754, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32200505

RESUMEN

Mesenchymal stem/ stromal cell (MSC) exhaustion has been suggested to be a hallmark of aging. Osteoarthritis has a complex etiology that comprises several factors. Dysplasia has been shown to be an individual risk factor for osteoarthritis. Subchondral bone changes are often the first detectable alterations in osteoarthritis. In this study, we aimed to determine whether skeletal MSCs are differentially affected in patients with primary versus dysplastic osteoarthritis. Patients undergoing hip arthroplasty due to primary osteoarthritis (n = 11) and osteoarthritis with hip dysplasia (n = 10) were included in the study. Femoral head subchondral bone was used for isolation of MSCs. The cells were compared using detailed ex-vivo and in-vitro analyses, which included immunophenotyping, colony-forming-unit fibroblast assay, growth kinetics, senescence, multilineage potential, immunophenotyping, and MSC marker-gene expression profiling. Isolated cells from primary osteoarthritis patients showed decreased viability in comparison with those from dysplasia patients, with similar mesenchymal fractions (i.e., CD45/ CD19/ CD14/ CD34-negative cells). In-vitro expanded MSCs from primary osteoarthritis patients showed reduced osteogenic and chondrogenic potential in comparison with dysplasia patients. There were no differences in clonogenicity, growth kinetics, senescence, adipogenic potential, and immunophenotype between these groups. Gene expression profiling showed well-known marker of bone marrow MSCs, the leptin receptor, to be significantly lower for primary osteoarthritis patients. Our study shows that the pathology of primary osteoarthritis is accompanied by bone MSC exhaustion, while biomechanical dysfunction associated with hip dysplasia can induce secondary osteoarthritis without this MSC impairment. Our study suggests that subchondral bone MSC exhaustion is implicated in the pathology of primary osteoarthritis.


Asunto(s)
Huesos/patología , Células Madre Mesenquimatosas/metabolismo , Osteoartritis/patología , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Condrogénesis , Femenino , Regulación de la Expresión Génica , Humanos , Inmunofenotipificación , Masculino , Osteoartritis/genética , Osteogénesis , Receptores de Leptina/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-31828066

RESUMEN

Effective regeneration of bone defects often presents significant challenges, particularly in patients with decreased tissue regeneration capacity due to extensive trauma, disease, and/or advanced age. A number of studies have focused on enhancing bone regeneration by applying mesenchymal stromal cells (MSCs) or MSC-based bone tissue engineering strategies. However, translation of these approaches from basic research findings to clinical use has been hampered by the limited understanding of MSC therapeutic actions and complexities, as well as costs related to the manufacturing, regulatory approval, and clinical use of living cells and engineered tissues. More recently, a shift from the view of MSCs directly contributing to tissue regeneration toward appreciating MSCs as "cell factories" that secrete a variety of bioactive molecules and extracellular vesicles with trophic and immunomodulatory activities has steered research into new MSC-based, "cell-free" therapeutic modalities. The current review recapitulates recent developments, challenges, and future perspectives of these various MSC-based bone tissue engineering and regeneration strategies.

11.
Stem Cell Res ; 38: 101465, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31132579

RESUMEN

Mesenchymal stem/stromal cells (MSCs) are being exploited for patient-derived stem-cell therapies. As the biological properties of MSCs derived from skeletal muscle of osteoarthritis patients are poorly understood, the aim of this study was to compare muscle MSCs with well-recognized bone and bone marrow-derived MSCs from these patients. Paired samples of skeletal muscle and trabecular bone tissue were obtained from 21 patients with osteoarthritis. Isolated cells were compared using ex vivo immunophenotyping and detailed in vitro analyses. These included the colony forming unit fibroblast assay, growth kinetics, senescence, multilineage potential, immunophenotyping, and MSC marker gene expression profiling. Freshly isolated MSCs from muscle showed improved viability over bone-derived MSCs, with similar mesenchymal fraction. Muscle-derived MSCs showed superior clonogenicity, higher growth rates, and lower doubling times. Muscle-derived MSCs also showed superior osteogenic and myogenic properties and a positive correlation between CD271 expression and adipogenesis. Senescence rate as well as adipogenic and chondrogenic potentials were similar. Skeletal muscle-derived MSCs of osteoarthritis patients have superior clonogenicity and growth kinetics compared to bone-derived MSCs, making them a good candidate for autologous stem-cell therapies. Moreover, the positive correlation between CD271 and adipogenesis suggest that CD271 expressing muscle MSCs might contribute to muscle steatosis observed in osteoarthritis.


Asunto(s)
Células de la Médula Ósea/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Osteoartritis/metabolismo , Osteogénesis , Células de la Médula Ósea/patología , Humanos , Masculino , Células Madre Mesenquimatosas/patología , Músculo Esquelético/patología , Osteoartritis/patología
12.
Mech Ageing Dev ; 177: 91-102, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30290161

RESUMEN

Geroprotectors, a class of drugs targeting multiple deficits occurring with age, necessitate the development of new animal models to test their efficacy. The COST Action MouseAGE is a European network whose aim is to reach consensus on the translational path required for geroprotectors, interventions targeting the biology of ageing. In our previous work we identified frailty and loss of resilience as a potential target for geroprotectors. Frailty is the result of an accumulation of deficits, which occurs with age and reduces the ability to respond to adverse events (physical resilience). Modelling frailty and physical resilience in mice is challenging for many reasons. There is no consensus on the precise definition of frailty and resilience in patients or on how best to measure it. This makes it difficult to evaluate available mouse models. In addition, the characterization of those models is poor. Here we review potential models of physical resilience, focusing on those where there is some evidence that the administration of acute stressors requires integrative responses involving multiple tissues and where aged mice showed a delayed recovery or a worse outcome then young mice in response to the stressor. These models include sepsis, trauma, drug- and radiation exposure, kidney and brain ischemia, exposure to noise, heat and cold shock.


Asunto(s)
Envejecimiento/fisiología , Modelos Biológicos , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA