Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Immunol ; 25(4): 633-643, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38486021

RESUMEN

Vaccines have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity and mortality, yet emerging variants challenge their effectiveness. The prevailing approach to updating vaccines targets the antibody response, operating under the presumption that it is the primary defense mechanism following vaccination or infection. This perspective, however, can overlook the role of T cells, particularly when antibody levels are low or absent. Here we show, through studies in mouse models lacking antibodies but maintaining functional B cells and lymphoid organs, that immunity conferred by prior infection or mRNA vaccination can protect against SARS-CoV-2 challenge independently of antibodies. Our findings, using three distinct models inclusive of a novel human/mouse ACE2 hybrid, highlight that CD8+ T cells are essential for combating severe infections, whereas CD4+ T cells contribute to managing milder cases, with interferon-γ having an important function in this antibody-independent defense. These findings highlight the importance of T cell responses in vaccine development, urging a broader perspective on protective immunity beyond just antibodies.


Asunto(s)
COVID-19 , Vacunas , Humanos , Animales , Ratones , SARS-CoV-2 , Linfocitos T CD8-positivos , COVID-19/prevención & control , Anticuerpos , Vacunación , Anticuerpos Antivirales , Anticuerpos Neutralizantes
2.
Vaccines (Basel) ; 11(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37896949

RESUMEN

The vaccination campaign against SARS-CoV-2 relies on the world-wide availability of effective vaccines, with a potential need of 20 billion vaccine doses to fully vaccinate the world population. To reach this goal, the manufacturing and logistic processes should be affordable to all countries, irrespective of economical and climatic conditions. Outer membrane vesicles (OMVs) are bacterial-derived vesicles that can be engineered to incorporate heterologous antigens. Given the inherent adjuvanticity, such modified OMVs can be used as vaccines to induce potent immune responses against the associated proteins. Here, we show that OMVs engineered to incorporate peptides derived from the receptor binding motif (RBM) of the spike protein from SARS-CoV-2 elicit an effective immune response in vaccinated mice, resulting in the production of neutralizing antibodies (nAbs) with a titre higher than 1:300. The immunity induced by the vaccine is sufficient to protect the animals from intranasal challenge with SARS-CoV-2, preventing both virus replication in the lungs and the pathology associated with virus infection. Furthermore, we show that OMVs can be effectively decorated with the RBM of the Omicron BA.1 variant and that such engineered OMVs induce nAbs against Omicron BA.1 and BA.5, as measured using the pseudovirus neutralization infectivity assay. Importantly, we show that the RBM438-509 ancestral-OMVs elicited antibodies which efficiently neutralize in vitro both the homologous ancestral strain, the Omicron BA.1 and BA.5 variants with a neutralization titre ranging from 1:100 to 1:1500, suggesting its potential use as a vaccine targeting diverse SARS-CoV-2 variants. Altogether, given the convenience associated with the ease of engineering, production and distribution, our results demonstrate that OMV-based SARS-CoV-2 vaccines can be a crucial addition to the vaccines currently available.

3.
Res Sq ; 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37292970

RESUMEN

The vaccination campaign against SARS-CoV-2 relies on the world-wide availability of effective vaccines, with a potential need of 20 billion vaccine doses to fully vaccinate the world population. To reach this goal, the manufacturing and logistic processes should be affordable to all countries, irrespectively of economical and climatic conditions. Outer membrane vesicles (OMV) are bacterial-derived vesicles that can be engineered to incorporate heterologous antigens. Given the inherent adjuvanticity, such modified OMV can be used as vaccine to induce potent immune responses against the associated protein. Here we show that OMVs engineered to incorporate peptides derived from the receptor binding motif (RBM) of the spike protein from SARS-CoV-2 elicit an effective immune response in vaccinated mice, resulting in the production of neutralizing antibodies (nAbs). The immunity induced by the vaccine is sufficient to protect the animals from intranasal challenge with SARS-CoV-2, preventing both virus replication in the lungs and the pathology associated with virus infection. Furthermore, we show that OMVs can be effectively decorated with the RBM of the Omicron BA.1 variant and that such engineered OMVs induced nAbs against Omicron BA.1 and BA.5, as judged by pseudovirus infectivity assay. Importantly, we show that the RBM438-509 ancestral-OMVs elicited antibodies which efficiently neutralized in vitro both the homologous ancestral strain, the Omicron BA.1 and BA.5 variants, suggesting its potential use as a pan SARS-CoV-2 vaccine. Altogether, given the convenience associated with ease of engineering, production and distribution, our results demonstrate that OMV-based SARS-CoV-2 vaccines can be a crucial addition to the vaccines currently available.

4.
EMBO Mol Med ; 15(5): e17580, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36946379

RESUMEN

Alongside vaccines, antiviral drugs are becoming an integral part of our response to the SARS-CoV-2 pandemic. Nirmatrelvir-an orally available inhibitor of the 3-chymotrypsin-like cysteine protease-has been shown to reduce the risk of progression to severe COVID-19. However, the impact of nirmatrelvir treatment on the development of SARS-CoV-2-specific adaptive immune responses is unknown. Here, by using mouse models of SARS-CoV-2 infection, we show that nirmatrelvir administration blunts the development of SARS-CoV-2-specific antibody and T cell responses. Accordingly, upon secondary challenge, nirmatrelvir-treated mice recruited significantly fewer memory T and B cells to the infected lungs and mediastinal lymph nodes, respectively. Together, the data highlight a potential negative impact of nirmatrelvir treatment with important implications for clinical management and might help explain the virological and/or symptomatic relapse after treatment completion reported in some individuals.


Asunto(s)
Inmunidad Adaptativa , Antivirales , Tratamiento Farmacológico de COVID-19 , Lactamas , Animales , Ratones , COVID-19/inmunología , SARS-CoV-2 , Antivirales/administración & dosificación , Inmunidad Adaptativa/efectos de los fármacos , Lactamas/administración & dosificación , Células T de Memoria/inmunología , Linfocitos B/inmunología , Ratones Endogámicos C57BL
5.
Methods Mol Biol ; 2454: 1-15, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33837517

RESUMEN

Human induced pluripotent stem cells (iPSCs) have emerged as an invaluable resource for basic research, disease modeling, and drug discovery over recent years. Given the numerous advantages of iPSCs over alternative models-including their human origin, their ability to be differentiated into almost any cell type, and the therapeutic potential of patient-specific iPSCs in personalized medicine-many labs are now considering iPSC models for their studies. As the quality of the starting population of iPSCs is a key determinant in the success of any one of these applications, it is crucial to adhere to best practices in iPSC culture. In the following protocol, we offer a comprehensive guide to the culture, cryopreservation, and quality control methods required for the establishment and maintenance of high-quality iPSC cultures.


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular , Criopreservación , Humanos , Medicina de Precisión
6.
Mol Ther ; 30(1): 311-326, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34547465

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax-a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein receptor-binding domain (RBD)-induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function, and lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Inmunización/métodos , Modelos Animales , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de ADN/administración & dosificación , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/genética , COVID-19/virología , Femenino , Hurones , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Dominios Proteicos , Ratas Sprague-Dawley
7.
Sci Immunol ; 7(67): eabl9929, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-34812647

RESUMEN

The development of a tractable small animal model faithfully reproducing human coronavirus disease 2019 pathogenesis would arguably meet a pressing need in biomedical research. Thus far, most investigators have used transgenic mice expressing the human ACE2 in epithelial cells (K18-hACE2 transgenic mice) that are intranasally instilled with a liquid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suspension under deep anesthesia. Unfortunately, this experimental approach results in disproportionate high central nervous system infection leading to fatal encephalitis, which is rarely observed in humans and severely limits this model's usefulness. Here, we describe the use of an inhalation tower system that allows exposure of unanesthetized mice to aerosolized virus under controlled conditions. Aerosol exposure of K18-hACE2 transgenic mice to SARS-CoV-2 resulted in robust viral replication in the respiratory tract, anosmia, and airway obstruction but did not lead to fatal viral neuroinvasion. When compared with intranasal inoculation, aerosol infection resulted in a more pronounced lung pathology including increased immune infiltration, fibrin deposition, and a transcriptional signature comparable to that observed in SARS-CoV-2­infected patients. This model may prove useful for studies of viral transmission, disease pathogenesis (including long-term consequences of SARS-CoV-2 infection), and therapeutic interventions.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/fisiopatología , Modelos Animales de Enfermedad , Encefalitis Viral/prevención & control , Queratina-18/genética , Rociadores Nasales , SARS-CoV-2/fisiología , Administración por Inhalación , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/inmunología , COVID-19/virología , Encefalitis Viral/mortalidad , Células Epiteliales/metabolismo , Femenino , Humanos , Queratina-18/metabolismo , Pulmón/inmunología , Pulmón/patología , Pulmón/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas/genética , Transcriptoma , Replicación Viral
8.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1273-1281, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28390949

RESUMEN

The Neuronal Ceroid Lipofuscinoses (NCLs, Batten disease) are a group of inherited neurodegenerative disorders with variable age of onset, characterized by the lysosomal accumulation of autofluorescent ceroid lipopigments. The endoplasmic reticulum (ER) is a critical organelle for normal cell function. Alteration of ER homeostasis leads to accumulation of misfolded protein in the ER and to activation of the unfolded protein response. ER stress and the UPR have recently been linked to the NCLs. In this review, we will discuss the evidence for UPR activation in the NCLs, and address its connection to disease pathogenesis. Further understanding of ER-stress response involvement in the NCLs may encourage development of novel therapeutical agents targeting these pathogenic pathways.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Respuesta de Proteína Desplegada , Animales , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Humanos , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Lipofuscinosis Ceroideas Neuronales/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA