Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell Mol Life Sci ; 80(2): 55, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36729338

RESUMEN

Chemokine ligands and receptors regulate the directional migration of leukocytes. Post-translational modifications of chemokine receptors including O-glycosylation and tyrosine sulfation have been reported to regulate ligand binding and resulting signaling. Through in silico analyses, we determined potential conserved O-glycosylation and sulfation sites on human and murine CC chemokine receptors. Glyco-engineered CHO cell lines were used to measure the impact of O-glycosylation on CC chemokine receptor CCR5, while mutation of tyrosine residues and treatment with sodium chlorate were performed to determine the effect of tyrosine sulfation. Changing the glycosylation or tyrosine sulfation on CCR5 reduced the receptor signaling by the more positively charged CCL5 and CCL8 more profoundly compared to the less charged CCL3. The loss of negatively charged sialic acids resulted only in a minor effect on CCL3-induced signal transduction. The enzymes GalNAc-T1 and GalNAc-T11 were shown to be involved in the process of chemokine receptor O-glycosylation. These results indicate that O-glycosylation and tyrosine sulfation are involved in the fine-tuning and recognition of chemokine interactions with CCR5 and the resulting signaling.


Asunto(s)
Quimiocinas , Transducción de Señal , Cricetinae , Animales , Humanos , Ratones , Quimiocinas/metabolismo , Procesamiento Proteico-Postraduccional , Receptores CCR5/genética , Células CHO , Tirosina/metabolismo , Unión Proteica
2.
Hepatol Commun ; 5(10): 1737-1754, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34532999

RESUMEN

Hepatic cell death occurs in response to diverse stimuli such as chemical and physical damage. The exposure of intracellular contents such as DNA during necrosis induces a severe inflammatory response that has yet to be fully explored therapeutically. Here, we sought means to neutralize the ability of extracellular DNA to induce deleterious tissue inflammation when drug-induced liver injury had already ensued. DNA exposure and inflammation were investigated in vivo in drug-induced liver injury using intravital microscopy. The necrotic DNA debris was studied in murine livers in vivo and in DNA debris models in vitro by using a positively charged chemokine-derived peptide (MIG30; CXCL9[74-103]). Acetaminophen-induced liver necrosis was associated with massive DNA accumulation, production of CXC chemokines, and neutrophil activation inside the injured tissue. The MIG30 peptide bound the healthy liver vasculature and, to a much greater extent, to DNA-rich necrotic tissue. Moreover, MIG30 bound extracellular DNA directly in vivo in a charge-dependent manner and independently of glycosaminoglycans and chemokines. Post-treatment of mice with MIG30 reduced mortality, liver damage, and inflammation significantly. These effects were not observed with a control peptide that does not bind DNA. Mechanistically, MIG30 inhibited the interaction between DNA and histones, and promoted the dissociation of histones from necrotic debris. MIG30 also inhibited the pro-inflammatory effect of CpG DNA, as measured by a reduction in CXCL8 production, indicating that MIG30 disturbs the ability of DNA to induce hepatic inflammation. Conclusion: The use of DNA-binding peptides reduces necrotic liver injury and inflammation, even at late timepoints.


Asunto(s)
Antiinflamatorios/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Degradación Necrótica del ADN/efectos de los fármacos , Hígado/patología , Péptidos/farmacología , Acetaminofén/efectos adversos , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Quimiocina CXCL9/efectos de los fármacos , Quimiocinas CXC/efectos de los fármacos , Modelos Animales de Enfermedad , Matriz Extracelular/genética , Histonas/efectos de los fármacos , Humanos , Interleucina-8/efectos de los fármacos , Hígado/efectos de los fármacos , Ratones , Necrosis/inducido químicamente , Necrosis/patología , Activación Neutrófila/efectos de los fármacos , Electricidad Estática
3.
Front Cell Dev Biol ; 9: 624025, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33644062

RESUMEN

The complement system is deeply embedded in our physiology and immunity. Complement activation generates a multitude of molecules that converge simultaneously on the opsonization of a target for phagocytosis and activation of the immune system via soluble anaphylatoxins. This response is used to control microorganisms and to remove dead cells, but also plays a major role in stimulating the adaptive immune response and the regeneration of injured tissues. Many of these effects inherently depend on complement receptors expressed on leukocytes and parenchymal cells, which, by recognizing complement-derived molecules, promote leukocyte recruitment, phagocytosis of microorganisms and clearance of immune complexes. Here, the plethora of information on the role of complement receptors will be reviewed, including an analysis of how this functionally and structurally diverse group of molecules acts jointly to exert the full extent of complement regulation of homeostasis.

4.
Dev Cell ; 50(3): 283-295.e5, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31231038

RESUMEN

Scavenger receptor B1 (SR-B1), the main receptor for high-density lipoprotein (HDL), is key in preventing atherosclerosis. It removes cholesterol from HDL, returning the lipid-poor lipoprotein to the circulation. To study the mechanisms controlling SR-B1 dynamics at the plasma membrane and its internalization rate, we developed a single-chain variable fragment (ScFv) antibody to image the receptor in live cells and track the behavior of single SR-B1 molecules. Unlike transferrin receptors, cholera-toxin-binding gangliosides, and bulk membrane markers, SR-B1 was internalized only marginally over hours. Plasmalemmal retention was not attributable to its C-terminal PDZ-binding domain or to attachment to the cortical cytoskeleton. Instead, SR-B1 undergoes multimerization into large metastable clusters that, despite being mobile in the membrane, fail to enter endocytic pathways. SR-B1 multimerization was impaired by mutating its C-terminal leucine zipper and by disrupting actin polymerization, causing rapid receptor internalization. Multimerization and plasmalemmal retention are critical for SR-B1 function.


Asunto(s)
Membrana Celular/metabolismo , Multimerización de Proteína , Receptores Depuradores de Clase B/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Endocitosis , Células Hep G2 , Humanos , Leucina Zippers , Mutación , Receptores Depuradores de Clase B/química , Receptores Depuradores de Clase B/genética
5.
Cell ; 169(4): 766-766.e1, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475901

RESUMEN

Macropinocytosis is the bulk ingestion of extracellular fluids via large endocytic vacuoles. This SnapShot provides an overview of physiological macropinocytosis in immune surveillance and its pathogenic contribution during infection and cancer proliferation.


Asunto(s)
Pinocitosis , Animales , Endocitosis , Humanos , Vigilancia Inmunológica , Infecciones/inmunología , Vacuolas
6.
Eur J Immunol ; 47(4): 646-657, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28294319

RESUMEN

Drug-induced liver injury (DILI) is a major cause of acute liver failure (ALF), where hepatocyte necrotic products trigger liver inflammation, release of CXC chemokine receptor 2 (CXCR2) ligands (IL-8) and other neutrophil chemotactic molecules. Liver infiltration by neutrophils is a major cause of the life-threatening tissue damage that ensues. A GRPR (gastrin-releasing peptide receptor) antagonist impairs IL-8-induced neutrophil chemotaxis in vitro. We investigated its potential to reduce acetaminophen-induced ALF, neutrophil migration, and mechanisms underlying this phenomenon. We found that acetaminophen-overdosed mice treated with GRPR antagonist had reduced DILI and neutrophil infiltration in the liver. Intravital imaging and cell tracking analysis revealed reduced neutrophil mobility within the liver. Surprisingly, GRPR antagonist inhibited CXCL2-induced migration in vivo, decreasing neutrophil activation through CD11b and CD62L modulation. Additionally, this compound decreased CXCL8-driven neutrophil chemotaxis in vitro independently of CXCR2 internalization, induced activation of MAPKs (p38 and ERK1/2) and downregulation of neutrophil adhesion molecules CD11b and CD66b. In silico analysis revealed direct binding of GRPR antagonist and CXCL8 to the same binding spot in CXCR2. These findings indicate a new potential use for GRPR antagonist for treatment of DILI through a mechanism involving adhesion molecule modulation and possible direct binding to CXCR2.


Asunto(s)
Bombesina/análogos & derivados , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Neutrófilos/inmunología , Fragmentos de Péptidos/farmacología , Receptores de Bombesina/antagonistas & inhibidores , Receptores de Interleucina-8B/metabolismo , Animales , Bombesina/farmacología , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Quimiotaxis/efectos de los fármacos , Humanos , Interleucina-8/metabolismo , Ratones , Ratones Endogámicos , Activación Neutrófila/efectos de los fármacos , Unión Proteica , Transducción de Señal/efectos de los fármacos
7.
J Nutr Biochem ; 39: 93-100, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27821289

RESUMEN

Alcoholism is a multifactorial and complex disorder responsible for 5.9% of deaths worldwide. Excessive consumption of ethanol (Et-OH) induces alcoholic liver disease (ALD), a condition comprising a spectrum of clinical signs and morphological changes, ranging from fatty liver (steatosis) to more severe forms of chronic liver injury. Secondary cofactors, such as nutritional and hepatotoxic comorbid conditions, can also contribute to liver disease development. Here we investigated the effects in the progression of ALD following short-term exposure to diet high in refined carbohydrates (HC), a high-sugar and -butter (HSB) hypercaloric diet and acute Et-OH consumption. HSB diet increased the body weight (BW) and adiposity independently of acute Et-OH consumption. HC diet did not affect BW but increased the adiposity, while acute Et-OH alone did not affect BW and adiposity. All groups of mice developed steatosis except the control group. Exposure to acute Et-OH and HSB diet increased the number of neutrophils and macrophages, and apoptosis in the liver. This combination also increased the number of circulating neutrophils and reduced mononuclear cells in the blood. Thus, short-term exposure to HSB diet and acute Et-OH intake is linked to increased liver injury. These findings offer important clues to understand the hepatic injuries associated with short exposure to hypercaloric diets and acute Et-OH.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Dieta Alta en Grasa/efectos adversos , Carbohidratos de la Dieta/efectos adversos , Hepatopatías Alcohólicas/patología , Adiposidad , Alanina Transaminasa/sangre , Animales , Peso Corporal , Carbohidratos de la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Hígado Graso/etiología , Hígado Graso/patología , Glutatión/sangre , Hígado/efectos de los fármacos , Hígado/patología , Hepatopatías Alcohólicas/etiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo
8.
Immunology ; 145(4): 583-96, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25939314

RESUMEN

Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5(-/-) mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5.


Asunto(s)
Virus del Dengue/fisiología , Dengue/inmunología , Macrófagos/inmunología , Receptores CCR5/inmunología , Replicación Viral/inmunología , Animales , Secuencia de Bases , Dengue/tratamiento farmacológico , Dengue/genética , Humanos , Macrófagos/patología , Macrófagos/virología , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Receptores CCR5/genética , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
9.
Nat Protoc ; 10(2): 258-68, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25569332

RESUMEN

Imaging of live animals using intravital microscopy (IVM) has provided a substantial advance in our understanding of cell biology. Here we describe how to adapt a conventional, relatively low-cost laser-scanning microscope to operate as a versatile imaging station. We present the surgical procedures needed to perform liver confocal IVM in mice, thereby allowing one to image different cells in their native environment, including hepatocytes, endothelial cells and leukocytes, as well as to analyze their morphology and function under physiological or pathological conditions. In addition, we propose a plethora of working doses of antibodies and probes to stain multiple cells and molecules simultaneously in vivo. Considering the central role of the liver in metabolism and immunity and the growing interest in the relationship between immune and parenchymal cells, this protocol, in which 20 min of preparation yields up to 4 h of imaging, provides useful insights for various research fields. In addition, the protocol can be easily adapted to investigate adipose tissue, mesentery, intestines, spleen and virtually any abdominal organ.


Asunto(s)
Hígado/citología , Microscopía Confocal/métodos , Animales , Anticuerpos , Diagnóstico por Imagen/métodos , Diseño de Equipo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Procesamiento de Imagen Asistido por Computador , Indoles/química , Hígado/cirugía , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal/instrumentación , Programas Informáticos , Coloración y Etiquetado/métodos
10.
Liver Int ; 35(4): 1162-71, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24814243

RESUMEN

BACKGROUND & AIMS: Liver regeneration is a multistage process that unfolds gradually, with different mediators acting at different stages of regeneration. Calcium (Ca(2+) ) signalling is essential for liver regeneration. In hepatocytes, Ca(2+) signalling results from the activation of inositol 1,4,5-trisphosphate receptors (InsP3 R) of which two of the three known isoforms are expressed (InsP3 R-I and InsP3 R-II). Here, we investigated the role of the InsP3 R-I-dependent Ca(2+) signals in hepatic proliferation during liver regeneration. METHODS: Partial hepatectomy (HX) in combination with knockdown of InsP3 R-I (AdsiRNA-I) was used to evaluate the role of InsP3 R-I on liver regeneration and hepatocyte proliferation, as assessed by liver to body mass ratio, PCNA expression, immunoblots and measurements of intracellular Ca(2+) signalling. RESULTS: AdsiRNA-I efficiently infected the liver as demonstrated by the expression of ß-galactosidase throughout the liver lobules. Moreover, this construct selectively and efficiently reduced the expression of InsP3 R-I, as evaluated by immunoblots. Expression of AdsiRNA-I in liver decreased peak Ca(2+) amplitude induced by vasopressin in isolated hepatocytes 2 days after HX. Reduced InsP3 R-I expression prior to HX also delayed liver regeneration, as measured by liver to body weight ratio, and reduced hepatocyte proliferation, as evaluated by PCNA staining, at the same time point. At later stages of regeneration, control hepatocytes showed a decreased expression of InsP3 R, as well as reduced InsP3 R-mediated Ca(2+) signalling, events that did not affect liver growth. CONCLUSION: Together, these results show that InsP3 R-I-dependent Ca(2+) signalling is an early triggering pathway required for liver regeneration.


Asunto(s)
Señalización del Calcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Regeneración Hepática , Hígado/metabolismo , Animales , Biomarcadores/metabolismo , Células CHO , Proliferación Celular , Cricetulus , Células HEK293 , Hepatectomía/métodos , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Hígado/fisiopatología , Hígado/cirugía , Masculino , Tamaño de los Órganos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Interferencia de ARN , Ratas Sprague-Dawley , Factores de Tiempo , Transfección
11.
PLoS One ; 9(5): e96464, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24798414

RESUMEN

Intense exercise is a physiological stress capable of inducing the interaction of neutrophils with muscle endothelial cells and their transmigration into tissue. Mechanisms driving this physiological inflammatory response are not known. Here, we investigate whether production of reactive oxygen species is relevant for neutrophil interaction with endothelial cells and recruitment into the quadriceps muscle in mice subjected to the treadmill fatiguing exercise protocol. Mice exercised until fatigue by running for 56.3±6.8 min on an electric treadmill. Skeletal muscle was evaluated by intravital microscopy at different time points after exercise, and then removed to assess local oxidative stress and histopathological analysis. We observed an increase in plasma lactate and creatine kinase (CK) concentrations after exercise. The numbers of monocytes, neutrophils, and lymphocytes in blood increased 12 and 24 hours after the exercise. Numbers of rolling and adherent leukocytes increased 3, 6, 12, and 24 hours post-exercise, as assessed by intravital microscopy. Using LysM-eGFP mice and confocal intravital microscopy technology, we show that the number of transmigrating neutrophils increased 12 hours post-exercise. Mutant gp91phox-/- (non-functional NADPH oxidase) mice and mice treated with apocynin showed diminished neutrophil recruitment. SOD treatment promoted further adhesion and transmigration of leukocytes 12 hours after the exercise. These findings confirm our hypothesis that treadmill exercise increases the recruitment of leukocytes to the postcapillary venules, and NADPH oxidase-induced ROS plays an important role in this process.


Asunto(s)
Músculo Esquelético/citología , Neutrófilos/metabolismo , Esfuerzo Físico/fisiología , Especies Reactivas de Oxígeno/metabolismo , Acetofenonas/farmacología , Animales , Creatina Quinasa/sangre , Ácido Láctico/sangre , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Neutrófilos/citología , Neutrófilos/fisiología
12.
Front Physiol ; 4: 405, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24454290

RESUMEN

The liver was among the first organs in which connexin proteins have been identified. Hepatocytes harbor connexin32 and connexin26, while non-parenchymal liver cells typically express connexin43. Connexins give rise to hemichannels, which dock with counterparts on adjacent cells to form gap junctions. Both hemichannels and gap junctions provide pathways for communication, via paracrine signaling or direct intercellular coupling, respectively. Over the years, hepatocellular gap junctions have been shown to regulate a number of liver-specific functions and to drive liver cell growth. In the last few years, it has become clear that connexin hemichannels are involved in liver cell death, particularly in hepatocyte apoptosis. This also holds true for hemichannels composed of pannexin1, a connexin-like protein recently identified in the liver. Moreover, pannexin1 hemichannels are key players in the regulation of hepatic inflammatory processes. The current paper provides a concise overview of the features of connexins, pannexins and their channels in the liver.

13.
Arch Toxicol ; 88(2): 199-212, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24013573

RESUMEN

Apoptosis not only plays a key role in physiological demise of defunct hepatocytes, but is also associated with a plethora of acute and chronic liver diseases as well as with hepatotoxicity. The present paper focuses on the modelling of this mode of programmed cell death in primary hepatocyte cultures. Particular attention is paid to the activation of spontaneous apoptosis during the isolation of hepatocytes from the liver, its progressive manifestation upon the subsequent establishment of cell cultures and simultaneously to strategies to counteract this deleterious process. In addition, currently applied approaches to experimentally induce controlled apoptosis in this in vitro setting for mechanistic research purposes and thereby its detection using relevant biomarkers are reviewed.


Asunto(s)
Apoptosis , Biomarcadores/análisis , Técnicas de Cultivo de Célula/métodos , Hepatocitos/citología , Hepatopatías/patología , Hígado/citología , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Medios de Cultivo/farmacología , Factor de Crecimiento Epidérmico/farmacología , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Glucagón/farmacología , Humanos , Insulina/farmacología
14.
Cell Commun Signal ; 11(1): 10, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23384127

RESUMEN

BACKGROUND: Adenosine triphosphate (ATP) is secreted from hepatocytes under physiological conditions and plays an important role in liver biology through the activation of P2 receptors. Conversely, higher extracellular ATP concentrations, as observed during necrosis, trigger inflammatory responses that contribute to the progression of liver injury. Impaired calcium (Ca2+) homeostasis is a hallmark of acetaminophen (APAP)-induced hepatotoxicity, and since ATP induces mobilization of the intracellular Ca2+ stocks, we evaluated if the release of ATP during APAP-induced necrosis could directly contribute to hepatocyte death. RESULTS: APAP overdose resulted in liver necrosis, massive neutrophil infiltration and large non-perfused areas, as well as remote lung inflammation. In the liver, these effects were significantly abrogated after ATP metabolism by apyrase or P2X receptors blockage, but none of the treatments prevented remote lung inflammation, suggesting a confined local contribution of purinergic signaling into liver environment. In vitro, APAP administration to primary mouse hepatocytes and also HepG2 cells caused cell death in a dose-dependent manner. Interestingly, exposure of HepG2 cells to APAP elicited significant release of ATP to the supernatant in levels that were high enough to promote direct cytotoxicity to healthy primary hepatocytes or HepG2 cells. In agreement to our in vivo results, apyrase treatment or blockage of P2 receptors reduced APAP cytotoxicity. Likewise, ATP exposure caused significant higher intracellular Ca2+ signal in APAP-treated primary hepatocytes, which was reproduced in HepG2 cells. Quantitative real time PCR showed that APAP-challenged HepG2 cells expressed higher levels of several purinergic receptors, which may explain the hypersensitivity to extracellular ATP. This phenotype was confirmed in humans analyzing liver biopsies from patients diagnosed with acute hepatic failure. CONCLUSION: We suggest that under pathological conditions, ATP may act not only an immune system activator, but also as a paracrine direct cytotoxic DAMP through the dysregulation of Ca2+ homeostasis.

15.
Liver Int ; 33(3): 353-61, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23402607

RESUMEN

The liver plays a vital role in the organism, and thousands of patients suffer and even die from hepatic complications every year. Viral hepatitis is one of the most important causes of liver-related pathological processes. However, sterile liver diseases, such as drug-induced liver injury, cirrhosis and fibrosis, are still a worldwide concern and contribute significantly to liver transplantation statistics. During hepatocyte death, several genuine intracellular contents are released to the interstitium, where they will trigger inflammatory responses that may boost organ injury. Intracellular purines are key molecules to several metabolic pathways and regulate cell bioenergetics. However, seminal studies in early 70s revealed that purines may also participate in cell-to-cell communication, and more recent data have unequivocally demonstrated that the purinergic signalling plays a key role in the recognition of cell functionality by neighbouring cells and also by the immune system. This new body of knowledge has pointed out that several promising therapeutic opportunities may rely on the modulation of purine release and sensing during diseases. Here, we review the most recent data on the physiological roles of purinergic signalling and how its imbalance may contribute to injury progression during sterile liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Metabolismo Energético/fisiología , Cirrosis Hepática/metabolismo , Redes y Vías Metabólicas/fisiología , Purinas/metabolismo , Comunicación Celular/fisiología , Humanos , Estructura Molecular , Purinas/química
16.
Hepatology ; 56(5): 1971-82, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22532075

RESUMEN

UNLABELLED: Acetaminophen (APAP) is a safe analgesic and antipyretic drug. However, APAP overdose leads to massive hepatocyte death. Cell death during APAP toxicity occurs by oncotic necrosis, in which the release of intracellular contents can elicit a reactive inflammatory response. We have previously demonstrated that an intravascular gradient of chemokines and mitochondria-derived formyl peptides collaborate to guide neutrophils to sites of liver necrosis by CXC chemokine receptor 2 (CXCR2) and formyl peptide receptor 1 (FPR1), respectively. Here, we investigated the role of CXCR2 chemokines and mitochondrial products during APAP-induced liver injury and in liver neutrophil influx and hepatotoxicity. During APAP overdose, neutrophils accumulated into the liver, and blockage of neutrophil infiltration by anti-granulocyte receptor 1 depletion or combined CXCR2-FPR1 antagonism significantly prevented hepatotoxicity. In agreement with our in vivo data, isolated human neutrophils were cytotoxic to HepG2 cells when cocultured, and the mechanism of neutrophil killing was dependent on direct contact with HepG2 cells and the CXCR2-FPR1-signaling pathway. Also, in mice and humans, serum levels of both mitochondrial DNA (mitDNA) and CXCR2 chemokines were higher during acute liver injury, suggesting that necrosis products may reach remote organs through the circulation, leading to a systemic inflammatory response. Accordingly, APAP-treated mice exhibited marked systemic inflammation and lung injury, which was prevented by CXCR2-FPR1 blockage and Toll-like receptor 9 (TLR9) absence (TLR9(-/-) mice). CONCLUSION: Chemokines and mitochondrial products (e.g., formyl peptides and mitDNA) collaborate in neutrophil-mediated injury and systemic inflammation during acute liver failure. Hepatocyte death is amplified by liver neutrophil infiltration, and the release of necrotic products into the circulation may trigger a systemic inflammatory response and remote lung injury.


Asunto(s)
Reacción de Fase Aguda/metabolismo , Quimiocinas/metabolismo , ADN Mitocondrial/sangre , Fallo Hepático Agudo/inmunología , Hígado/patología , Neutrófilos/inmunología , Receptores de Formil Péptido/metabolismo , Acetaminofén , Lesión Pulmonar Aguda/sangre , Lesión Pulmonar Aguda/inmunología , Reacción de Fase Aguda/inmunología , Adolescente , Adulto , Análisis de Varianza , Animales , Movimiento Celular , Quimiocinas/sangre , Quimiocinas/inmunología , Niño , Técnicas de Cocultivo , Femenino , Células Hep G2 , Humanos , Interleucina-8/sangre , Hígado/metabolismo , Fallo Hepático Agudo/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Proteínas Mitocondriales/inmunología , Proteínas Mitocondriales/metabolismo , Necrosis/inmunología , Receptores de Formil Péptido/inmunología , Receptores de Interleucina-8B/sangre , Receptores de Interleucina-8B/inmunología , Receptores de Interleucina-8B/metabolismo , Transducción de Señal , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/inmunología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA