Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Child Dev ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223863

RESUMEN

Humans are driven by an intrinsic motivation to learn, but the developmental origins of curiosity-driven exploration remain unclear. We investigated the computational principles guiding 4-year-old children's exploration during a touchscreen game (N = 102, F = 49, M = 53, primarily white and middle-class, data collected in the Netherlands from 2021-2023). Children guessed the location of characters that were hiding following predictable (yet noisy) patterns. Children could freely switch characters, which allowed us to quantify when they decided to explore something different and what they chose to explore. Bayesian modeling of their responses revealed that children selected activities that were more novel and offered greater learning progress (LP). Moreover, children's interest in making LP correlated with better learning performance. These findings highlight the importance of novelty and LP in guiding children's exploration.

2.
Brain Struct Funct ; 229(8): 1769-1772, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39343839
4.
Nat Commun ; 15(1): 5780, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987261

RESUMEN

Adaptive information seeking is essential for humans to effectively navigate complex and dynamic environments. Here, we developed a gaze-contingent eye-tracking paradigm to examine the early emergence of adaptive information-seeking. Toddlers (N = 60, 18-36 months) and adults (N = 42) either learnt that an animal was equally likely to be found in any of four available locations, or that it was most likely to be found in one particular location. Afterwards, they were given control of a torchlight, which they could move with their eyes to explore the otherwise pitch-black task environment. Eye-movement data and Markov models show that, from 24 months of age, toddlers become more exploratory than adults, and start adapting their exploratory strategies to the information structure of the task. These results show that toddlers' search strategies are more sophisticated than previously thought, and identify the unique features that distinguish their information search from adults'.


Asunto(s)
Conducta en la Búsqueda de Información , Humanos , Lactante , Masculino , Preescolar , Femenino , Adulto , Conducta en la Búsqueda de Información/fisiología , Movimientos Oculares/fisiología , Conducta Exploratoria/fisiología , Cadenas de Markov , Desarrollo Infantil/fisiología
5.
Nat Commun ; 15(1): 5963, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013855

RESUMEN

While the hippocampus is key for human cognitive abilities, it is also a phylogenetically old cortex and paradoxically considered evolutionarily preserved. Here, we introduce a comparative framework to quantify preservation and reconfiguration of hippocampal organisation in primate evolution, by analysing the hippocampus as an unfolded cortical surface that is geometrically matched across species. Our findings revealed an overall conservation of hippocampal macro- and micro-structure, which shows anterior-posterior and, perpendicularly, subfield-related organisational axes in both humans and macaques. However, while functional organisation in both species followed an anterior-posterior axis, we observed a marked reconfiguration in the latter across species, which mirrors a rudimentary integration of the default-mode-network in non-human primates. Here we show that microstructurally preserved regions like the hippocampus may still undergo functional reconfiguration in primate evolution, due to their embedding within heteromodal association networks.


Asunto(s)
Evolución Biológica , Hipocampo , Animales , Hipocampo/fisiología , Hipocampo/anatomía & histología , Hipocampo/diagnóstico por imagen , Humanos , Masculino , Femenino , Macaca , Imagen por Resonancia Magnética/métodos , Primates/fisiología , Primates/anatomía & histología , Adulto , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/anatomía & histología , Corteza Cerebral/fisiología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/anatomía & histología , Vías Nerviosas/fisiología , Vías Nerviosas/anatomía & histología , Macaca mulatta
6.
Cell Rep ; 43(5): 114191, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38717901

RESUMEN

While humans are known to have several premotor cortical areas, secondary motor cortex (M2) is often considered to be the only higher-order motor area of the mouse brain and is thought to combine properties of various human premotor cortices. Here, we show that axonal tracer, functional connectivity, myelin mapping, gene expression, and optogenetics data contradict this notion. Our analyses reveal three premotor areas in the mouse, anterior-lateral motor cortex (ALM), anterior-lateral M2 (aM2), and posterior-medial M2 (pM2), with distinct structural, functional, and behavioral properties. By using the same techniques across mice and humans, we show that ALM has strikingly similar functional and microstructural properties to human anterior ventral premotor areas and that aM2 and pM2 amalgamate properties of human pre-SMA and cingulate cortex. These results provide evidence for the existence of multiple premotor areas in the mouse and chart a comparative map between the motor systems of humans and mice.


Asunto(s)
Corteza Motora , Humanos , Corteza Motora/fisiología , Animales , Ratones , Masculino , Ratones Endogámicos C57BL , Adulto , Femenino , Mapeo Encefálico
7.
Brain Struct Funct ; 229(8): 1913-1925, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38739155

RESUMEN

The subdivisions of the extended cingulate cortex of the human brain are implicated in a number of high-level behaviors and affected by a range of neuropsychiatric disorders. Its anatomy, function, and response to therapeutics are often studied using non-human animals, including the mouse. However, the similarity of human and mouse frontal cortex, including cingulate areas, is still not fully understood. Some accounts emphasize resemblances between mouse cingulate cortex and human cingulate cortex while others emphasize similarities with human granular prefrontal cortex. We use comparative neuroimaging to study the connectivity of the cingulate cortex in the mouse and human, allowing comparisons between mouse 'gold standard' tracer and imaging data, and, in addition, comparison between the mouse and the human using comparable imaging data. We find overall similarities in organization of the cingulate between species, including anterior and midcingulate areas and a retrosplenial area. However, human cingulate contains subareas with a more fine-grained organization than is apparent in the mouse and it has connections to prefrontal areas not present in the mouse. Results such as these help formally address between-species brain organization and aim to improve the translation from preclinical to human results.


Asunto(s)
Giro del Cíngulo , Imagen por Resonancia Magnética , Ratones Endogámicos C57BL , Vías Nerviosas , Giro del Cíngulo/fisiología , Giro del Cíngulo/diagnóstico por imagen , Animales , Humanos , Masculino , Vías Nerviosas/fisiología , Ratones , Adulto , Femenino , Mapeo Encefálico , Corteza Prefrontal/fisiología , Corteza Prefrontal/diagnóstico por imagen , Especificidad de la Especie , Adulto Joven
8.
J Comp Neurol ; 532(5): e25618, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686628

RESUMEN

The evolutionary history of canids and felids is marked by a deep time separation that has uniquely shaped their behavior and phenotype toward refined predatory abilities. The caudate nucleus is a subcortical brain structure associated with both motor control and cognitive, emotional, and executive functions. We used a combination of three-dimensional imaging, allometric scaling, and structural analyses to compare the size and shape characteristics of the caudate nucleus. The sample consisted of MRI scan data obtained from six canid species (Canis lupus lupus, Canis latrans, Chrysocyon brachyurus, Lycaon pictus, Vulpes vulpes, Vulpes zerda), two canid subspecies (Canis lupus familiaris, Canis lupus dingo), as well as three felids (Panthera tigris, Panthera uncia, Felis silvestris catus). Results revealed marked conservation in the scaling and shape attributes of the caudate nucleus across species, with only slight deviations. We hypothesize that observed differences in caudate nucleus size and structure for the domestic canids are reflective of enhanced cognitive and emotional pathways that possibly emerged during domestication.


Asunto(s)
Canidae , Núcleo Caudado , Felidae , Imagen por Resonancia Magnética , Animales , Núcleo Caudado/anatomía & histología , Núcleo Caudado/diagnóstico por imagen , Felidae/anatomía & histología , Felidae/fisiología , Canidae/anatomía & histología , Imagen por Resonancia Magnética/métodos , Masculino , Conducta Animal/fisiología , Femenino , Especificidad de la Especie , Encéfalo/anatomía & histología
9.
Elife ; 132024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488854

RESUMEN

In vivo neuroimaging studies have established several reproducible volumetric sex differences in the human brain, but the causes of such differences are hard to parse. While mouse models are useful for understanding the cellular and mechanistic bases of sex-specific brain development, there have been no attempts to formally compare human and mouse neuroanatomical sex differences to ascertain how well they translate. Addressing this question would shed critical light on the use of the mouse as a translational model for sex differences in the human brain and provide insights into the degree to which sex differences in brain volume are conserved across mammals. Here, we use structural magnetic resonance imaging to conduct the first comparative neuroimaging study of sex-specific neuroanatomy of the human and mouse brain. In line with previous findings, we observe that in humans, males have significantly larger and more variable total brain volume; these sex differences are not mirrored in mice. After controlling for total brain volume, we observe modest cross-species congruence in the volumetric effect size of sex across 60 homologous regions (r=0.30). This cross-species congruence is greater in the cortex (r=0.33) than non-cortex (r=0.16). By incorporating regional measures of gene expression in both species, we reveal that cortical regions with greater cross-species congruence in volumetric sex differences also show greater cross-species congruence in the expression profile of 2835 homologous genes. This phenomenon differentiates primary sensory regions with high congruence of sex effects and gene expression from limbic cortices where congruence in both these features was weaker between species. These findings help identify aspects of sex-biased brain anatomy present in mice that are retained, lost, or inverted in humans. More broadly, our work provides an empirical basis for targeting mechanistic studies of sex-specific brain development in mice to brain regions that best echo sex-specific brain development in humans.


Asunto(s)
Encéfalo , Caracteres Sexuales , Humanos , Masculino , Femenino , Ratones , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Neuroimagen/métodos , Imagen por Resonancia Magnética/métodos , Mamíferos
10.
Trends Cogn Sci ; 28(5): 441-453, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38413257

RESUMEN

What drives our curiosity remains an elusive and hotly debated issue, with multiple hypotheses proposed but a cohesive account yet to be established. This review discusses traditional and emergent theories that frame curiosity as a desire to know and a drive to learn, respectively. We adopt a model-based approach that maps the temporal dynamics of various factors underlying curiosity-based exploration, such as uncertainty, information gain, and learning progress. In so doing, we identify the limitations of past theories and posit an integrated account that harnesses their strengths in describing curiosity as a tool for optimal environmental exploration. In our unified account, curiosity serves as a 'common currency' for exploration, which must be balanced with other drives such as safety and hunger to achieve efficient action.


Asunto(s)
Conducta Exploratoria , Humanos , Conducta Exploratoria/fisiología , Aprendizaje/fisiología , Animales , Modelos Psicológicos
11.
Brain Struct Funct ; 229(8): 1873-1888, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38388696

RESUMEN

Non-human primates are extensively used in neuroscience research as models of the human brain, with the rhesus macaque being a prominent example. We have previously introduced a set of tractography protocols (XTRACT) for reconstructing 42 corresponding white matter (WM) bundles in the human and the macaque brain and have shown cross-species comparisons using such bundles as WM landmarks. Our original XTRACT protocols were developed using the F99 macaque brain template. However, additional macaque template brains are becoming increasingly common. Here, we generalise the XTRACT tractography protocol definitions across five macaque brain templates, including the F99, D99, INIA, Yerkes and NMT. We demonstrate equivalence of such protocols in two ways: (a) Firstly by comparing the bodies of the tracts derived using protocols defined across the different templates considered, (b) Secondly by comparing the projection patterns of the reconstructed tracts across the different templates in two cross-species (human-macaque) comparison tasks. The results confirm similarity of all predictions regardless of the macaque brain template used, providing direct evidence for the generalisability of these tractography protocols across the five considered templates.


Asunto(s)
Encéfalo , Imagen de Difusión Tensora , Sustancia Blanca , Animales , Imagen de Difusión Tensora/métodos , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Humanos , Macaca mulatta/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Mapeo Encefálico/métodos , Femenino , Macaca , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Especificidad de la Especie
12.
Dev Sci ; 27(3): e13460, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38155558

RESUMEN

Habituation and dishabituation are the most prevalent measures of infant cognitive functioning, and they have reliably been shown to predict later cognitive outcomes. Yet, the exact mechanisms underlying infant habituation and dishabituation are still unclear. To investigate them, we tested 106 8-month-old infants on a classic habituation task and a novel visual learning task. We used a hierarchical Bayesian model to identify individual differences in sustained attention, learning performance, processing speed and curiosity from the visual learning task. These factors were then related to habituation and dishabituation. We found that habituation time was related to individual differences in processing speed, while dishabituation was related to curiosity, but only for infants who did not habituate. These results offer novel insights in the mechanisms underlying habituation and serve as proof of concept for hierarchical models as an effective tool to measure individual differences in infant cognitive functioning. RESEARCH HIGHLIGHTS: We used a hierarchical Bayesian model to measure individual differences in infants' processing speed, learning performance, sustained attention, and curiosity. Faster processing speed was related to shorter habituation time. High curiosity was related to stronger dishabituation responses, but only for infants who did not habituate.


Asunto(s)
Habituación Psicofisiológica , Velocidad de Procesamiento , Lactante , Humanos , Habituación Psicofisiológica/fisiología , Individualidad , Teorema de Bayes , Conducta Exploratoria
13.
Cereb Cortex ; 33(22): 10959-10971, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37798142

RESUMEN

Fluid intelligence encompasses a wide range of abilities such as working memory, problem-solving, and relational reasoning. In the human brain, these abilities are associated with the Multiple Demand Network, traditionally thought to involve combined activity of specific regions predominantly in the prefrontal and parietal cortices. However, the structural basis of the interactions between areas in the Multiple Demand Network, as well as their evolutionary basis among primates, remains largely unexplored. Here, we exploit diffusion MRI to elucidate the major white matter pathways connecting areas of the human core and extended Multiple Demand Network. We then investigate whether similar pathways can be identified in the putative homologous areas of the Multiple Demand Network in the macaque monkey. Finally, we contrast human and monkey networks using a recently proposed approach to compare different species' brains within a common organizational space. Our results indicate that the core Multiple Demand Network relies mostly on dorsal longitudinal connections and, although present in the macaque, these connections are more pronounced in the human brain. The extended Multiple Demand Network relies on distinct pathways and communicates with the core Multiple Demand Network through connections that also appear enhanced in the human compared with the macaque.


Asunto(s)
Macaca , Sustancia Blanca , Animales , Humanos , Vías Nerviosas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Mapeo Encefálico , Haplorrinos , Imagen por Resonancia Magnética
14.
Brain Struct Funct ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904002

RESUMEN

The recent development of methods for constructing directly comparable white matter atlases in primate brains from diffusion MRI allows us to probe specializations unique to humans, great apes, and other primate taxa. Here, we constructed the first white matter atlas of a lesser ape using an ex vivo diffusion-weighted scan of a brain from a young adult (5.5 years) male lar gibbon. We find that white matter architecture of the gibbon temporal lobe suggests specializations that are reminiscent of those previously reported for great apes, specifically, the expansion of the arcuate fasciculus and the inferior longitudinal fasciculus in the temporal lobe. Our findings suggest these white matter expansions into the temporal lobe were present in the last common ancestor to hominoids approximately 16 million years ago and were further modified in the great ape and human lineages. White matter atlases provide a useful resource for identifying neuroanatomical differences and similarities between humans and other primate species and provide insight into the evolutionary variation and stasis of brain organization.

15.
bioRxiv ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37662398

RESUMEN

In vivo neuroimaging studies have established several reproducible volumetric sex differences in the human brain, but the causes of such differences are hard to parse. While mouse models are useful for understanding the cellular and mechanistic bases of sex-biased brain development in mammals, there have been no attempts to formally compare mouse and human sex differences across the whole brain to ascertain how well they translate. Addressing this question would shed critical light on use of the mouse as a translational model for sex differences in the human brain and provide insights into the degree to which sex differences in brain volume are conserved across mammals. Here, we use cross-species structural magnetic resonance imaging to carry out the first comparative neuroimaging study of sex-biased neuroanatomical organization of the human and mouse brain. In line with previous findings, we observe that in humans, males have significantly larger and more variable total brain volume; these sex differences are not mirrored in mice. After controlling for total brain volume, we observe modest cross-species congruence in the volumetric effect size of sex across 60 homologous brain regions (r=0.30; e.g.: M>F amygdala, hippocampus, bed nucleus of the stria terminalis, and hypothalamus and F>M anterior cingulate, somatosensory, and primary auditory cortices). This cross-species congruence is greater in the cortex (r=0.33) than non-cortex (r=0.16). By incorporating regional measures of gene expression in both species, we reveal that cortical regions with greater cross-species congruence in volumetric sex differences also show greater cross-species congruence in the expression profile of 2835 homologous genes. This phenomenon differentiates primary sensory regions with high congruence of sex effects and gene expression from limbic cortices where congruence in both these features was weaker between species. These findings help identify aspects of sex-biased brain anatomy present in mice that are retained, lost, or inverted in humans. More broadly, our work provides an empirical basis for targeting mechanistic studies of sex-biased brain development in mice to brain regions that best echo sex-biased brain development in humans.

16.
Open Mind (Camb) ; 7: 141-155, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37416070

RESUMEN

Infants learn to navigate the complexity of the physical and social world at an outstanding pace, but how they accomplish this learning is still largely unknown. Recent advances in human and artificial intelligence research propose that a key feature to achieving quick and efficient learning is meta-learning, the ability to make use of prior experiences to learn how to learn better in the future. Here we show that 8-month-old infants successfully engage in meta-learning within very short timespans after being exposed to a new learning environment. We developed a Bayesian model that captures how infants attribute informativity to incoming events, and how this process is optimized by the meta-parameters of their hierarchical models over the task structure. We fitted the model with infants' gaze behavior during a learning task. Our results reveal how infants actively use past experiences to generate new inductive biases that allow future learning to proceed faster.

17.
Nat Commun ; 14(1): 4320, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468455

RESUMEN

Understanding brain structure and function often requires combining data across different modalities and scales to link microscale cellular structures to macroscale features of whole brain organisation. Here we introduce the BigMac dataset, a resource combining in vivo MRI, extensive postmortem MRI and multi-contrast microscopy for multimodal characterisation of a single whole macaque brain. The data spans modalities (MRI and microscopy), tissue states (in vivo and postmortem), and four orders of spatial magnitude, from microscopy images with micrometre or sub-micrometre resolution, to MRI signals on the order of millimetres. Crucially, the MRI and microscopy images are carefully co-registered together to facilitate quantitative multimodal analyses. Here we detail the acquisition, curation, and first release of the data, that together make BigMac a unique, openly-disseminated resource available to researchers worldwide. Further, we demonstrate example analyses and opportunities afforded by the data, including improvement of connectivity estimates from ultra-high angular resolution diffusion MRI, neuroanatomical insight provided by polarised light imaging and myelin-stained histology, and the joint analysis of MRI and microscopy data for reconstruction of the microscopy-inspired connectome. All data and code are made openly available.


Asunto(s)
Conectoma , Macaca , Animales , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética , Autopsia , Conectoma/métodos
19.
Cereb Cortex ; 33(6): 2539-2547, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35709759

RESUMEN

Recent tractography and microdissection studies have shown that the left arcuate fasciculus (AF)-a fiber tract thought to be crucial for speech production-consists of a minimum of 2 subtracts directly connecting the temporal and frontal cortex. These subtracts link the posterior superior temporal gyrus (STG) and middle temporal gyrus (MTG) to the inferior frontal gyrus. Although they have been hypothesized to mediate different functions in speech production, direct evidence for this hypothesis is lacking. To functionally segregate the 2 AF segments, we combined functional magnetic resonance imaging with diffusion-weighted imaging and probabilistic tractography using 2 prototypical speech production tasks, namely spoken pseudoword repetition (tapping sublexical phonological mapping) and verb generation (tapping lexical-semantic mapping). We observed that the repetition of spoken pseudowords is mediated by the subtract of STG, while generating an appropriate verb to a spoken noun is mediated by the subtract of MTG. Our findings provide strong evidence for a functional dissociation between the AF subtracts, namely a sublexical phonological mapping by the STG subtract and a lexical-semantic mapping by the MTG subtract. Our results contribute to the unraveling of a century-old controversy concerning the functional role in speech production of a major fiber tract involved in language.


Asunto(s)
Lenguaje , Habla , Imagen de Difusión por Resonancia Magnética , Imagen por Resonancia Magnética , Fibras Nerviosas Mielínicas , Mapeo Encefálico
20.
Elife ; 112022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36342372

RESUMEN

The ever-increasing use of mouse models in preclinical neuroscience research calls for an improvement in the methods used to translate findings between mouse and human brains. Previously, we showed that the brains of primates can be compared in a direct quantitative manner using a common reference space built from white matter tractography data (Mars et al., 2018b). Here, we extend the common space approach to evaluate the similarity of mouse and human brain regions using openly accessible brain-wide transcriptomic data sets. We show that mouse-human homologous genes capture broad patterns of neuroanatomical organization, but the resolution of cross-species correspondences can be improved using a novel supervised machine learning approach. Using this method, we demonstrate that sensorimotor subdivisions of the neocortex exhibit greater similarity between species, compared with supramodal subdivisions, and mouse isocortical regions separate into sensorimotor and supramodal clusters based on their similarity to human cortical regions. We also find that mouse and human striatal regions are strongly conserved, with the mouse caudoputamen exhibiting an equal degree of similarity to both the human caudate and putamen.


Asunto(s)
Roedores , Sustancia Blanca , Animales , Humanos , Transcriptoma , Encéfalo , Mapeo Encefálico/métodos , Primates
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA