Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Curr Biol ; 33(11): R449-R452, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37279668

RESUMEN

A new study has revealed that neural amplification in mouse primary visual cortex substantially increases between training sessions as mice learn to detect novel optogenetic input directly into visual cortex, suggesting consolidation and recurrent network plasticity contribute to learning the behavior.


Asunto(s)
Aprendizaje , Corteza Visual , Animales , Ratones , Plasticidad Neuronal
2.
Sci Rep ; 12(1): 13130, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907928

RESUMEN

Optical coherence tomography (OCT) allows label-free, micron-scale 3D imaging of biological tissues' fine structures with significant depth and large field-of-view. Here we introduce a novel OCT-based neuroimaging setting, accompanied by a feature segmentation algorithm, which enables rapid, accurate, and high-resolution in vivo imaging of 700 µm depth across the mouse cortex. Using a commercial OCT device, we demonstrate 3D reconstruction of microarchitectural elements through a cortical column. Our system is sensitive to structural and cellular changes at micron-scale resolution in vivo, such as those from injury or disease. Therefore, it can serve as a tool to visualize and quantify spatiotemporal brain elasticity patterns. This highly transformative and versatile platform allows accurate investigation of brain cellular architectural changes by quantifying features such as brain cell bodies' density, volume, and average distance to the nearest cell. Hence, it may assist in longitudinal studies of microstructural tissue alteration in aging, injury, or disease in a living rodent brain.


Asunto(s)
Imagenología Tridimensional , Tomografía de Coherencia Óptica , Algoritmos , Animales , Imagenología Tridimensional/métodos , Ratones , Redes Neurales de la Computación , Neuroimagen/métodos , Tomografía de Coherencia Óptica/métodos
3.
Nat Commun ; 12(1): 3689, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140486

RESUMEN

Calcium imaging is a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of fundamental principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon imaging, however, cannot presently access somatic calcium signals of neurons from all layers of macaque motor cortex due to photon scattering. Here, we demonstrate an implant and imaging system capable of chronic, motion-stabilized two-photon imaging of neuronal calcium signals from macaques engaged in a motor task. By imaging apical dendrites, we achieved optical access to large populations of deep and superficial cortical neurons across dorsal premotor (PMd) and gyral primary motor (M1) cortices. Dendritic signals from individual neurons displayed tuning for different directions of arm movement. Combining several technical advances, we developed an optical BCI (oBCI) driven by these dendritic signalswhich successfully decoded movement direction online. By fusing two-photon functional imaging with CLARITY volumetric imaging, we verified that many imaged dendrites which contributed to oBCI decoding originated from layer 5 output neurons, including a putative Betz cell. This approach establishes new opportunities for studying motor control and designing BCIs via two photon imaging.


Asunto(s)
Interfaces Cerebro-Computador , Calcio/metabolismo , Dendritas/fisiología , Microscopía Intravital/instrumentación , Microscopía Intravital/métodos , Corteza Motora/diagnóstico por imagen , Imagen Multimodal/métodos , Animales , Proteínas de Unión al Calcio/metabolismo , Dendritas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Implantes Experimentales , Macaca mulatta , Masculino , Modelos Neurológicos , Actividad Motora/fisiología , Corteza Motora/fisiología , Neuronas/fisiología , Fotones
4.
Science ; 365(6453)2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31320556

RESUMEN

Perceptual experiences may arise from neuronal activity patterns in mammalian neocortex. We probed mouse neocortex during visual discrimination using a red-shifted channelrhodopsin (ChRmine, discovered through structure-guided genome mining) alongside multiplexed multiphoton-holography (MultiSLM), achieving control of individually specified neurons spanning large cortical volumes with millisecond precision. Stimulating a critical number of stimulus-orientation-selective neurons drove widespread recruitment of functionally related neurons, a process enhanced by (but not requiring) orientation-discrimination task learning. Optogenetic targeting of orientation-selective ensembles elicited correct behavioral discrimination. Cortical layer-specific dynamics were apparent, as emergent neuronal activity asymmetrically propagated from layer 2/3 to layer 5, and smaller layer 5 ensembles were as effective as larger layer 2/3 ensembles in eliciting orientation discrimination behavior. Population dynamics emerging after optogenetic stimulation both correctly predicted behavior and resembled natural internal representations of visual stimuli at cellular resolution over volumes of cortex.


Asunto(s)
Neocórtex/fisiología , Neocórtex/ultraestructura , Neuronas/fisiología , Percepción Visual/fisiología , Animales , Organismos Acuáticos/genética , Células Cultivadas , Channelrhodopsins/genética , Holografía/métodos , Ratones , Imagen Molecular , Opsinas/genética , Optogenética , Orientación/fisiología , Estimulación Luminosa , Percepción Visual/genética
5.
Nature ; 565(7741): 645-649, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651638

RESUMEN

Categorically distinct basic drives (for example, for social versus feeding behaviour1-3) can exert potent influences on each other; such interactions are likely to have important adaptive consequences (such as appropriate regulation of feeding in the context of social hierarchies) and can become maladaptive (such as in clinical settings involving anorexia). It is known that neural systems regulating natural and adaptive caloric intake, and those regulating social behaviours, involve related circuitry4-7, but the causal circuit mechanisms of these drive adjudications are not clear. Here we investigate the causal role in behaviour of cellular-resolution experience-specific neuronal populations in the orbitofrontal cortex, a major reward-processing hub that contains diverse activity-specific neuronal populations that respond differentially to various aspects of caloric intake8-13 and social stimuli14,15. We coupled genetically encoded activity imaging with the development and application of methods for optogenetic control of multiple individually defined cells, to both optically monitor and manipulate the activity of many orbitofrontal cortex neurons at the single-cell level in real time during rewarding experiences (caloric consumption and social interaction). We identified distinct populations within the orbitofrontal cortex that selectively responded to either caloric rewards or social stimuli, and found that activity of individually specified naturally feeding-responsive neurons was causally linked to increased feeding behaviour; this effect was selective as, by contrast, single-cell resolution activation of naturally social-responsive neurons inhibited feeding, and activation of neurons responsive to neither feeding nor social stimuli did not alter feeding behaviour. These results reveal the presence of potent cellular-level subnetworks within the orbitofrontal cortex that can be precisely engaged to bidirectionally control feeding behaviours subject to, for example, social influences.


Asunto(s)
Conducta Alimentaria/fisiología , Vías Nerviosas/fisiología , Neuronas/citología , Neuronas/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Conducta Social , Animales , Condicionamiento Operante/fisiología , Ingestión de Energía , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Recompensa , Análisis de la Célula Individual
6.
Opt Express ; 23(25): 32573-81, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26699047

RESUMEN

Phase spatial light modulators (SLMs) are widely used for generating multifocal three-dimensional (3D) illumination patterns, but these are limited to a field of view constrained by the pixel count or size of the SLM. Further, with two-photon SLM-based excitation, increasing the number of focal spots penalizes the total signal linearly--requiring more laser power than is available or can be tolerated by the sample. Here we analyze and demonstrate a method of using galvanometer mirrors to time-sequentially reposition multiple 3D holograms, both extending the field of view and increasing the total time-averaged two-photon signal. We apply our approach to 3D two-photon in vivo neuronal calcium imaging.


Asunto(s)
Holografía/métodos , Imagenología Tridimensional , Iluminación/métodos , Optometría/métodos , Humanos , Estimulación Luminosa/métodos
7.
Nature ; 526(7575): 653-9, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26436451

RESUMEN

Top-down prefrontal cortex inputs to the hippocampus have been hypothesized to be important in memory consolidation, retrieval, and the pathophysiology of major psychiatric diseases; however, no such direct projections have been identified and functionally described. Here we report the discovery of a monosynaptic prefrontal cortex (predominantly anterior cingulate) to hippocampus (CA3 to CA1 region) projection in mice, and find that optogenetic manipulation of this projection (here termed AC-CA) is capable of eliciting contextual memory retrieval. To explore the network mechanisms of this process, we developed and applied tools to observe cellular-resolution neural activity in the hippocampus while stimulating AC-CA projections during memory retrieval in mice behaving in virtual-reality environments. Using this approach, we found that learning drives the emergence of a sparse class of neurons in CA2/CA3 that are highly correlated with the local network and that lead synchronous population activity events; these neurons are then preferentially recruited by the AC-CA projection during memory retrieval. These findings reveal a sparsely implemented memory retrieval mechanism in the hippocampus that operates via direct top-down prefrontal input, with implications for the patterning and storage of salient memory representations.


Asunto(s)
Memoria/fisiología , Neocórtex/citología , Neocórtex/fisiología , Vías Nerviosas/fisiología , Animales , Condicionamiento Psicológico , Miedo , Giro del Cíngulo/fisiología , Hipocampo/citología , Hipocampo/fisiología , Aprendizaje/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Neuronas/fisiología , Optogenética , Corteza Prefrontal/fisiología , Interfaz Usuario-Computador
8.
Neuron ; 86(1): 106-39, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25856490

RESUMEN

Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals.


Asunto(s)
Conducta Animal/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Optogenética , Animales
9.
J Neurosci ; 34(37): 12587-600, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25209296

RESUMEN

To guide future experiments aimed at understanding the mouse visual system, it is essential that we have a solid handle on the global topography of visual cortical areas. Ideally, the method used to measure cortical topography is objective, robust, and simple enough to guide subsequent targeting of visual areas in each subject. We developed an automated method that uses retinotopic maps of mouse visual cortex obtained with intrinsic signal imaging (Schuett et al., 2002; Kalatsky and Stryker, 2003; Marshel et al., 2011) and applies an algorithm to automatically identify cortical regions that satisfy a set of quantifiable criteria for what constitutes a visual area. This approach facilitated detailed parcellation of mouse visual cortex, delineating nine known areas (primary visual cortex, lateromedial area, anterolateral area, rostrolateral area, anteromedial area, posteromedial area, laterointermediate area, posterior area, and postrhinal area), and revealing two additional areas that have not been previously described as visuotopically mapped in mice (laterolateral anterior area and medial area). Using the topographic maps and defined area boundaries from each animal, we characterized several features of map organization, including variability in area position, area size, visual field coverage, and cortical magnification. We demonstrate that higher areas in mice often have representations that are incomplete or biased toward particular regions of visual space, suggestive of specializations for processing specific types of information about the environment. This work provides a comprehensive description of mouse visuotopic organization and describes essential tools for accurate functional localization of visual areas.


Asunto(s)
Potenciales de Acción/fisiología , Mapeo Encefálico/métodos , Red Nerviosa/citología , Red Nerviosa/fisiología , Corteza Visual/citología , Corteza Visual/fisiología , Percepción Visual/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
11.
Nature ; 496(7444): 219-23, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23515158

RESUMEN

Behavioural states in mammals, such as the anxious state, are characterized by several features that are coordinately regulated by diverse nervous system outputs, ranging from behavioural choice patterns to changes in physiology (in anxiety, exemplified respectively by risk-avoidance and respiratory rate alterations). Here we investigate if and how defined neural projections arising from a single coordinating brain region in mice could mediate diverse features of anxiety. Integrating behavioural assays, in vivo and in vitro electrophysiology, respiratory physiology and optogenetics, we identify a surprising new role for the bed nucleus of the stria terminalis (BNST) in the coordinated modulation of diverse anxiety features. First, two BNST subregions were unexpectedly found to exert opposite effects on the anxious state: oval BNST activity promoted several independent anxious state features, whereas anterodorsal BNST-associated activity exerted anxiolytic influence for the same features. Notably, we found that three distinct anterodorsal BNST efferent projections-to the lateral hypothalamus, parabrachial nucleus and ventral tegmental area-each implemented an independent feature of anxiolysis: reduced risk-avoidance, reduced respiratory rate, and increased positive valence, respectively. Furthermore, selective inhibition of corresponding circuit elements in freely moving mice showed opposing behavioural effects compared with excitation, and in vivo recordings during free behaviour showed native spiking patterns in anterodorsal BNST neurons that differentiated safe and anxiogenic environments. These results demonstrate that distinct BNST subregions exert opposite effects in modulating anxiety, establish separable anxiolytic roles for different anterodorsal BNST projections, and illustrate circuit mechanisms underlying selection of features for the assembly of the anxious state.


Asunto(s)
Ansiedad/fisiopatología , Vías Nerviosas/fisiología , Núcleos Septales/fisiopatología , Potenciales de Acción , Animales , Ansiedad/patología , Electrofisiología , Ratones , Optogenética , Núcleos Septales/anatomía & histología , Núcleos Septales/citología
12.
Neuron ; 76(4): 713-20, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23177957

RESUMEN

We show functional-anatomical organization of motion direction in mouse dorsal lateral geniculate nucleus (dLGN) using two-photon calcium imaging of dense populations in thalamus. Surprisingly, the superficial 75 µm region contains anterior and posterior direction-selective neurons (DSLGNs) intermingled with nondirection-selective neurons, while upward- and downward-selective neurons are nearly absent. Unexpectedly, the remaining neurons encode both anterior and posterior directions, forming horizontal motion-axis selectivity. A model of random wiring consistent with these results makes quantitative predictions about the connectivity of direction-selective retinal ganglion cell (DSRGC) inputs to the superficial dLGN. DSLGNs are more sharply tuned than DSRGCs. These results suggest that dLGN maintains and sharpens retinal direction selectivity and integrates opposing DSRGC subtypes in a functional-anatomical region, perhaps forming a feature representation for horizontal-axis motion, contrary to dLGN being a simple relay. Furthermore, they support recent conjecture that cortical direction and orientation selectivity emerge in part from a previously undescribed motion-selective retinogeniculate pathway.


Asunto(s)
Cuerpos Geniculados/citología , Cuerpos Geniculados/fisiología , Movimiento (Física) , Neuronas/fisiología , Orientación/fisiología , Compuestos de Anilina/farmacocinética , Animales , Calcio/metabolismo , Colorantes/farmacocinética , Fluoresceínas/farmacocinética , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Red Nerviosa/fisiología , Estimulación Luminosa , Rodaminas/farmacocinética , Estadística como Asunto , Factores de Tiempo , Vías Visuales/fisiología
13.
Neuron ; 72(6): 1040-54, 2011 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-22196338

RESUMEN

To establish the mouse as a genetically tractable model for high-order visual processing, we characterized fine-scale retinotopic organization of visual cortex and determined functional specialization of layer 2/3 neuronal populations in seven retinotopically identified areas. Each area contains a distinct visuotopic representation and encodes a unique combination of spatiotemporal features. Areas LM, AL, RL, and AM prefer up to three times faster temporal frequencies and significantly lower spatial frequencies than V1, while V1 and PM prefer high spatial and low temporal frequencies. LI prefers both high spatial and temporal frequencies. All extrastriate areas except LI increase orientation selectivity compared to V1, and three areas are significantly more direction selective (AL, RL, and AM). Specific combinations of spatiotemporal representations further distinguish areas. These results reveal that mouse higher visual areas are functionally distinct, and separate groups of areas may be specialized for motion-related versus pattern-related computations, perhaps forming pathways analogous to dorsal and ventral streams in other species.


Asunto(s)
Mapeo Encefálico/métodos , Percepción de Movimiento/fisiología , Percepción Espacial/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Animales , Ratones , Ratones Endogámicos C57BL , Estimulación Luminosa/métodos
14.
Neuron ; 71(4): 617-31, 2011 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-21867879

RESUMEN

Glycoprotein-deleted (ΔG) rabies virus is a powerful tool for studies of neural circuit structure. Here, we describe the development and demonstrate the utility of new resources that allow experiments directly investigating relationships between the structure and function of neural circuits. New methods and reagents allowed efficient production of 12 novel ΔG rabies variants from plasmid DNA. These new rabies viruses express useful neuroscience tools, including the Ca(2+) indicator GCaMP3 for monitoring activity; Channelrhodopsin-2 for photoactivation; allatostatin receptor for inactivation by ligand application; and rtTA, ER(T2)CreER(T2), or FLPo, for control of gene expression. These new tools allow neurons targeted on the basis of their connectivity to have their function assayed or their activity or gene expression manipulated. Combining these tools with in vivo imaging and optogenetic methods and/or inducible gene expression in transgenic mice will facilitate experiments investigating neural circuit development, plasticity, and function that have not been possible with existing reagents.


Asunto(s)
Antígenos Virales/genética , Antígenos Virales/metabolismo , Expresión Génica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Red Nerviosa/fisiología , Neuronas/fisiología , Virus de la Rabia/genética , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Variación Genética , Vectores Genéticos , Antagonistas de Hormonas/farmacología , Ratones , Ratones Transgénicos , Red Nerviosa/anatomía & histología , Neuronas/efectos de los fármacos , Neuronas/virología , Neuropéptidos/farmacología , Técnicas de Placa-Clamp , Virus de la Rabia/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
15.
Neuron ; 67(4): 562-74, 2010 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-20797534

RESUMEN

To understand fine-scale structure and function of single mammalian neuronal networks, we developed and validated a strategy to genetically target and trace monosynaptic inputs to a single neuron in vitro and in vivo. The strategy independently targets a neuron and its presynaptic network for specific gene expression and fine-scale labeling, using single-cell electroporation of DNA to target infection and monosynaptic retrograde spread of a genetically modifiable rabies virus. The technique is highly reliable, with transsynaptic labeling occurring in every electroporated neuron infected by the virus. Targeting single neocortical neuronal networks in vivo, we found clusters of both spiny and aspiny neurons surrounding the electroporated neuron in each case, in addition to intricately labeled distal cortical and subcortical inputs. This technique, broadly applicable for probing and manipulating single neuronal networks with single-cell resolution in vivo, may help shed new light on fundamental mechanisms underlying circuit development and information processing by neuronal networks throughout the brain.


Asunto(s)
Expresión Génica , Neocórtex/citología , Vías Nerviosas/fisiología , Técnicas de Trazados de Vías Neuroanatómicas/métodos , Neuronas/fisiología , Animales , Electroporación , Vectores Genéticos , Técnicas Histológicas , Técnicas In Vitro , Ratones , Neocórtex/metabolismo , Neocórtex/virología , Vías Nerviosas/citología , Trazadores del Tracto Neuronal , Neuronas/citología , Neuronas/metabolismo , Neuronas/virología , Terminales Presinápticos/metabolismo , Terminales Presinápticos/virología , Células Piramidales/citología , Células Piramidales/fisiología , Virus de la Rabia/genética , Ratas , Reproducibilidad de los Resultados , Corteza Visual/citología , Corteza Visual/metabolismo , Corteza Visual/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA