Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nat Commun ; 14(1): 7897, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036525

RESUMEN

Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employ computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant receptor binding domain. These engineered proteins bind with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interact with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicit sera with broad betacoronavirus reactivity and protect as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.


Asunto(s)
Anticuerpos Antivirales , SARS-CoV-2 , Humanos , Animales , Ratones , Epítopos , Epítopos Inmunodominantes , Péptidos , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes
2.
Biophys J ; 122(18): 3646-3655, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37085995

RESUMEN

Imaging two or more fluorescent biosensors in the same living cell can reveal the spatiotemporal coordination of protein activities. However, using multiple Förster resonance energy transfer (FRET) biosensors together is challenging due to toxicity and the need for orthogonal fluorophores. Here we generate a biosensor component that binds selectively to the activated conformation of three different proteins. This enabled multiplexed FRET with fewer fluorophores, and reduced toxicity. We generated this MultiBinder (MB) reagent for the GTPases RhoA, Rac1, and Cdc42 by combining portions of the downstream effector proteins Pak1 and Rhotekin. Using FRET between mCherry on the MB and YPet or mAmetrine on two target proteins, the activities of any pair of GTPases could be distinguished. The MB was used to image Rac1 and RhoA together with a third, dye-based biosensor for Cdc42. Quantifying effects of biosensor combinations on the frequency, duration, and velocity of cell protrusions and retractions demonstrated reduced toxicity. Multiplexed imaging revealed signaling hierarchies between the three proteins at the cell edge where they regulate motility.


Asunto(s)
Técnicas Biosensibles , Proteína de Unión al GTP cdc42 , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Transducción de Señal , Transferencia Resonante de Energía de Fluorescencia/métodos , Extensiones de la Superficie Celular , Colorantes , Técnicas Biosensibles/métodos , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/metabolismo
3.
bioRxiv ; 2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36909627

RESUMEN

Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employed computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant RBD. These engineered proteins bound with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interacted with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicited sera with broad betacoronavirus reactivity and protected as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.

5.
Nat Commun ; 12(1): 6091, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667203

RESUMEN

Physiological changes in GTP levels in live cells have never been considered a regulatory step of RAC1 activation because intracellular GTP concentration (determined by chromatography or mass spectrometry) was shown to be substantially higher than the in vitro RAC1 GTP dissociation constant (RAC1-GTP Kd). Here, by combining genetically encoded GTP biosensors and a RAC1 activity biosensor, we demonstrated that GTP levels fluctuating around RAC1-GTP Kd correlated with changes in RAC1 activity in live cells. Furthermore, RAC1 co-localized in protrusions of invading cells with several guanylate metabolism enzymes, including rate-limiting inosine monophosphate dehydrogenase 2 (IMPDH2), which was partially due to direct RAC1-IMPDH2 interaction. Substitution of endogenous IMPDH2 with IMPDH2 mutants incapable of binding RAC1 did not affect total intracellular GTP levels but suppressed RAC1 activity. Targeting IMPDH2 away from the plasma membrane did not alter total intracellular GTP pools but decreased GTP levels in cell protrusions, RAC1 activity, and cell invasion. These data provide a mechanism of regulation of RAC1 activity by local GTP pools in live cells.


Asunto(s)
Guanosina Trifosfato/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Membrana Celular/metabolismo , Movimiento Celular , Guanosina Trifosfato/química , Células HEK293 , Humanos , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , Cinética , Unión Proteica , Proteína de Unión al GTP rac1/química , Proteína de Unión al GTP rac1/genética
6.
Front Cell Dev Biol ; 9: 685825, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490242

RESUMEN

The accuracy of biosensor ratio imaging is limited by signal/noise. Signals can be weak when biosensor concentrations must be limited to avoid cell perturbation. This can be especially problematic in imaging of low volume regions, e.g., along the cell edge. The cell edge is an important imaging target in studies of cell motility. We show how the division of fluorescence intensities with low signal-to-noise at the cell edge creates specific artifacts due to background subtraction and division by small numbers, and that simply improving the accuracy of background subtraction cannot address these issues. We propose a new approach where, rather than simply subtracting background from the numerator and denominator, we subtract a noise correction factor (NCF) from the numerator only. This NCF can be derived from the analysis of noise distribution in the background near the cell edge or from ratio measurements in the cell regions where signal-to-noise is high. We test the performance of the method first by examining two noninteracting fluorophores distributed evenly in cells. This generated a uniform ratio that could provide a ground truth. We then analyzed actual protein activities reported by a single chain biosensor for the guanine exchange factor (GEF) Asef, and a dual chain biosensor for the GTPase Cdc42. The reduction of edge artifacts revealed persistent Asef activity in a narrow band (∼640 nm wide) immediately adjacent to the cell edge. For Cdc42, the NCF method revealed an artifact that would have been obscured by traditional background subtraction approaches.

7.
Commun Biol ; 3(1): 470, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32843667

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Commun Biol ; 3(1): 390, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694539

RESUMEN

Aligned extracellular matrix fibers enable fibroblasts to undergo myofibroblastic activation and achieve elongated shapes. Activated fibroblasts are able to contract, perpetuating the alignment of these fibers. This poorly understood feedback process is critical in chronic fibrosis conditions, including cancer. Here, using fiber networks that serve as force sensors, we identify "3D perpendicular lateral protrusions" (3D-PLPs) that evolve from lateral cell extensions named twines. Twines originate from stratification of cyclic-actin waves traversing the cell and swing freely in 3D to engage neighboring fibers. Once engaged, a lamellum forms and extends multiple secondary twines, which fill in to form a sheet-like PLP, in a force-entailing process that transitions focal adhesions to activated (i.e., pathological) 3D-adhesions. The specific morphology of PLPs enables cells to increase contractility and force on parallel fibers. Controlling geometry of extracellular networks confirms that anisotropic fibrous environments support 3D-PLP formation and function, suggesting an explanation for cancer-associated desmoplastic expansion.


Asunto(s)
Citoesqueleto/genética , Matriz Extracelular/genética , Adhesiones Focales/genética , Neoplasias/genética , Actinas/genética , Adhesión Celular/genética , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Miofibroblastos/metabolismo , Neoplasias/patología , Microambiente Tumoral/genética
9.
Methods Mol Biol ; 2173: 113-126, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32651913

RESUMEN

This chapter provides an overview of the technologies we have developed to control proteins with light. First, we focus on the LOV domain, a versatile building block with reversible photo-response, kinetics tunable through mutagenesis, and ready expression in a broad range of cells and animals. Incorporation of LOV into proteins produced a variety of approaches: simple steric block of the active site released when irradiation lengthened a linker (PA-GTPases), reversible release from sequestration at mitochondria (LOVTRAP), and Z-lock, a method in which a light-cleavable bridge is placed where it occludes the active site. The latter two methods make use of Zdk, small engineered proteins that bind selectively to the dark state of LOV. In order to control endogenous proteins, inhibitory peptides are embedded in the LOV domain where they are exposed only upon irradiation (PKA and MLCK inhibition). Similarly, controlled exposure of a nuclear localization sequence and nuclear export sequence is used to reversibly send proteins into the nucleus. Another avenue of engineering makes use of the heterodimerization of FKBP and FRB proteins, induced by the small molecule rapamycin. We control rapamycin with light or simply add it to target cells. Incorporation of fused FKBP-FRB into kinases, guanine exchange factors, or GTPases leads to rapamycin-induced protein activation. Kinases are engineered so that they can interact with only a specific substrate upon activation. Recombination of split proteins using rapamycin-induced conformational changes minimizes spontaneous reassembly. Finally, we explore the insertion of LOV or rapamycin-responsive domains into proteins such that light-induced conformational changes exert allosteric control of the active site. We hope these design ideas will inspire new applications and broaden our reach towards dynamic biological processes that unfold when studied in vivo.


Asunto(s)
Optogenética/métodos , Ingeniería de Proteínas/métodos , Animales , GTP Fosfohidrolasas/metabolismo , Modelos Biológicos , Unión Proteica/efectos de los fármacos , Sirolimus/farmacología , Proteínas de Unión a Tacrolimus/metabolismo
10.
Nat Chem Biol ; 16(8): 826-833, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32424303

RESUMEN

Here we generate fluorescence resonance energy transfer biosensors for guanine exchange factors (GEFs) by inserting a fluorescent protein pair in a structural 'hinge' common to many GEFs. Fluorescent biosensors can map the activation of signaling molecules in space and time, but it has not been possible to quantify how different activation events affect one another or contribute to a specific cell behavior. By imaging the GEF biosensors in the same cells as red-shifted biosensors of Rho GTPases, we can apply partial correlation analysis to parse out the extent to which each GEF contributes to the activation of a specific GTPase in regulating cell movement. Through analysis of spontaneous cell protrusion events, we identify when and where the GEF Asef regulates the GTPases Cdc42 and Rac1 to control cell edge dynamics. This approach exemplifies a powerful means to elucidate the real-time connectivity of signal transduction networks.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Secuencia de Aminoácidos/genética , Técnicas Biosensibles/métodos , Unión Proteica/genética , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/metabolismo
11.
J Cell Biol ; 218(9): 3077-3097, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31420453

RESUMEN

Rho family GTPases are activated with precise spatiotemporal control by guanine nucleotide exchange factors (GEFs). Guanine exchange factor H1 (GEF-H1), a RhoA activator, is thought to act as an integrator of microtubule (MT) and actin dynamics in diverse cell functions. Here we identify a GEF-H1 autoinhibitory sequence and exploit it to produce an activation biosensor to quantitatively probe the relationship between GEF-H1 conformational change, RhoA activity, and edge motion in migrating cells with micrometer- and second-scale resolution. Simultaneous imaging of MT dynamics and GEF-H1 activity revealed that autoinhibited GEF-H1 is localized to MTs, while MT depolymerization subadjacent to the cell cortex promotes GEF-H1 activation in an ~5-µm-wide peripheral band. GEF-H1 is further regulated by Src phosphorylation, activating GEF-H1 in a narrower band ~0-2 µm from the cell edge, in coordination with cell protrusions. This indicates a synergistic intersection between MT dynamics and Src signaling in RhoA activation through GEF-H1.


Asunto(s)
Microtúbulos/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal , Proteína de Unión al GTP rhoA/metabolismo , Familia-src Quinasas/metabolismo , Animales , Técnicas Biosensibles , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Microtúbulos/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Proteína de Unión al GTP rhoA/genética , Familia-src Quinasas/genética
12.
Proc Natl Acad Sci U S A ; 116(4): 1267-1272, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30630946

RESUMEN

Rac1 activation is at the core of signaling pathways regulating polarized cell migration. So far, it has not been possible to directly explore the structural changes triggered by Rac1 activation at the molecular level. Here, through a multiscale imaging workflow that combines biosensor imaging of Rac1 dynamics with electron cryotomography, we identified, within the crowded environment of eukaryotic cells, a unique nanoscale architecture of a flexible, signal-dependent actin structure. In cell regions with high Rac1 activity, we found a structural regime that spans from the ventral membrane up to a height of ∼60 nm above that membrane, composed of directionally unaligned, densely packed actin filaments, most shorter than 150 nm. This unique Rac1-induced morphology is markedly different from the dendritic network architecture in which relatively short filaments emanate from existing, longer actin filaments. These Rac1-mediated scaffold assemblies are devoid of large macromolecules such as ribosomes or other filament types, which are abundant at the periphery and within the remainder of the imaged volumes. Cessation of Rac1 activity induces a complete and rapid structural transition, leading to the absence of detectable remnants of such structures within 150 s, providing direct structural evidence for rapid actin filament network turnover induced by GTPase signaling events. It is tempting to speculate that this highly dynamical nanoscaffold system is sensitive to local spatial cues, thus serving to support the formation of more complex actin filament architectures-such as those mandated by epithelial-mesenchymal transition, for example-or resetting the region by completely dissipating.


Asunto(s)
Citoesqueleto/metabolismo , Citosol/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Transición Epitelial-Mesenquimal/fisiología , GTP Fosfohidrolasas/metabolismo , Humanos , Ratones , Transducción de Señal/fisiología
13.
Nat Commun ; 9(1): 2124, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844364

RESUMEN

The perinuclear actin cap is an important cytoskeletal structure that regulates nuclear morphology and re-orientation during front-rear polarisation. The mechanisms regulating the actin cap are currently poorly understood. Here, we demonstrate that STEF/TIAM2, a Rac1 selective guanine nucleotide exchange factor, localises at the nuclear envelope, co-localising with the key perinuclear proteins Nesprin-2G and Non-muscle myosin IIB (NMMIIB), where it regulates perinuclear Rac1 activity. We show that STEF depletion reduces apical perinuclear actin cables (a phenotype rescued by targeting active Rac1 to the nuclear envelope), increases nuclear height and impairs nuclear re-orientation. STEF down-regulation also reduces perinuclear pMLC and decreases myosin-generated tension at the nuclear envelope, suggesting that STEF-mediated Rac1 activity regulates NMMIIB activity to promote stabilisation of the perinuclear actin cap. Finally, STEF depletion decreases nuclear stiffness and reduces expression of TAZ-regulated genes, indicating an alteration in mechanosensing pathways as a consequence of disruption of the actin cap.


Asunto(s)
Proteínas de Capping de la Actina/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Membrana Nuclear/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Células A549 , Aciltransferasas , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Humanos , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
14.
Curr Biol ; 27(5): 624-637, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28238662

RESUMEN

The individual molecular pathways downstream of Cdc42, Rac, and Rho GTPases are well documented, but we know surprisingly little about how these pathways are coordinated when cells move in a complex environment in vivo. In the developing embryo, melanoblasts originating from the neural crest must traverse the dermis to reach the epidermis of the skin and hair follicles. We previously established that Rac1 signals via Scar/WAVE and Arp2/3 to effect pseudopod extension and migration of melanoblasts in skin. Here we show that RhoA is redundant in the melanocyte lineage but that Cdc42 coordinates multiple motility systems independent of Rac1. Similar to Rac1 knockouts, Cdc42 null mice displayed a severe loss of pigmentation, and melanoblasts showed cell-cycle progression, migration, and cytokinesis defects. However, unlike Rac1 knockouts, Cdc42 null melanoblasts were elongated and displayed large, bulky pseudopods with dynamic actin bursts. Despite assuming an elongated shape usually associated with fast mesenchymal motility, Cdc42 knockout melanoblasts migrated slowly and inefficiently in the epidermis, with nearly static pseudopods. Although much of the basic actin machinery was intact, Cdc42 null cells lacked the ability to polarize their Golgi and coordinate motility systems for efficient movement. Loss of Cdc42 de-coupled three main systems: actin assembly via the formin FMNL2 and Arp2/3, active myosin-II localization, and integrin-based adhesion dynamics.


Asunto(s)
Actinas/metabolismo , Adhesión Celular , Movimiento Celular , Melanocitos/metabolismo , Proteína de Unión al GTP cdc42/genética , Animales , Linaje de la Célula , Ratones/embriología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA
15.
Curr Biol ; 26(16): 2079-89, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27451898

RESUMEN

Apical constriction is a change in cell shape that drives key morphogenetic events including gastrulation and neural tube formation. Apical force-producing actomyosin networks drive apical constriction by contracting while connected to cell-cell junctions. The mechanisms by which developmental patterning regulates these actomyosin networks and associated junctions with spatial precision are not fully understood. Here we identify a myosin light-chain kinase MRCK-1 as a key regulator of C. elegans gastrulation that integrates spatial and developmental patterning information. We show that MRCK-1 is required for activation of contractile actomyosin dynamics and elevated cortical tension in the apical cell cortex of endoderm precursor cells. MRCK-1 is apically localized by active Cdc42 at the external, cell-cell contact-free surfaces of apically constricting cells, downstream of cell fate determination mechanisms. We establish that the junctional components α-catenin, ß-catenin, and cadherin become highly enriched at the apical junctions of apically constricting cells and that MRCK-1 and myosin activity are required in vivo for this enrichment. Taken together, our results define mechanisms that position a myosin activator to a specific cell surface where it both locally increases cortical tension and locally enriches junctional components to facilitate apical constriction. These results reveal crucial links that can tie spatial information to local force generation to drive morphogenesis.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al GTP/genética , Gastrulación , Regulación de la Expresión Génica , Proteínas Serina-Treonina Quinasas/genética , Actomiosina/metabolismo , Animales , Fenómenos Biomecánicos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Adhesión Celular , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular , Proteínas de Unión al GTP/metabolismo , Uniones Intercelulares/metabolismo , Miosinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
16.
J Am Chem Soc ; 138(8): 2571-5, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26863024

RESUMEN

Biosensors that report endogenous protein activity in vivo can be based on environment-sensing fluorescent dyes. The dyes can be attached to reagents that bind selectively to a specific conformation of the targeted protein, such that binding leads to a fluorescence change. Dyes that are sufficiently bright for use at low, nonperturbing intracellular concentrations typically undergo changes in intensity rather than the shifts in excitation or emission maxima that would enable precise quantitation through ratiometric imaging. We report here mero199, an environment-sensing dye that undergoes a 33 nm solvent-dependent shift in excitation. The dye was used to generate a ratiometric biosensor of Cdc42 (CRIB199) without the need for additional fluorophores. CRIB199 was used in the same cell with a FRET sensor of Rac1 activation to simultaneously observe Cdc42 and Rac1 activity in cellular protrusions, indicating that Rac1 but not Cdc42 activity was reduced during tail retraction, and specific protrusions had reduced Cdc42 activity. A novel program (EdgeProps) used to correlate localized activation with cell edge dynamics indicated that Rac1 was specifically reduced during retraction.


Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Compuestos de Piridinio/química , Proteína de Unión al GTP cdc42/análisis , Proteína de Unión al GTP rac1/análisis , Fotoblanqueo
17.
J Biol Chem ; 286(14): 12141-8, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21242305

RESUMEN

SmgGDS is an atypical guanine nucleotide exchange factor (GEF) that promotes both cell proliferation and migration and is up-regulated in several types of cancer. SmgGDS has been previously shown to activate a wide variety of small GTPases, including the Ras family members Rap1a, Rap1b, and K-Ras, as well as the Rho family members Cdc42, Rac1, Rac2, RhoA, and RhoB. In contrast, here we show that SmgGDS exclusively activates RhoA and RhoC among a large panel of purified GTPases. Consistent with the well known properties of GEFs, this activation is catalytic, and SmgGDS preferentially binds to nucleotide-depleted RhoA relative to either GDP- or GTPγS-bound forms. However, mutational analyses indicate that SmgGDS utilizes a distinct exchange mechanism compared with canonical GEFs and in contrast to known GEFs requires RhoA to retain a polybasic region for activation. A homology model of SmgGDS highlights an electronegative surface patch and a highly conserved binding groove. Mutation of either area ablates the ability of SmgGDS to activate RhoA. Finally, the in vitro specificity of SmgGDS for RhoA and RhoC is retained in cells. Together, these results indicate that SmgGDS is a bona fide GEF that specifically activates RhoA and RhoC through a unique mechanism not used by other Rho family exchange factors.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Western Blotting , Línea Celular , Cromatografía en Gel , Dicroismo Circular , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/genética , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/genética
18.
Methods Mol Biol ; 469: 103-11, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19109706

RESUMEN

Wnt signaling has been demonstrated to regulate diverse cell processes throughout the development of the Caenorhabditis elegans embryo. This chapter describes methods that have been used to investigate some of these Wnt-dependent processes: endoderm specification, mitotic spindle orientation, and cell migration.


Asunto(s)
Bioensayo/métodos , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/fisiología , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Animales , Caenorhabditis elegans/anatomía & histología , Proteínas de Caenorhabditis elegans/genética , Polaridad Celular , Proteínas Wnt/genética
19.
Curr Biol ; 16(20): 1986-97, 2006 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-17055977

RESUMEN

BACKGROUND: Embryonic patterning mechanisms regulate the cytoskeletal machinery that drives morphogenesis, but there are few cases where links between patterning mechanisms and morphogenesis are well understood. We have used a combination of genetics, in vivo imaging, and cell manipulations to identify such links in C. elegans gastrulation. Gastrulation in C. elegans begins with the internalization of endodermal precursor cells in a process that depends on apical constriction of ingressing cells. RESULTS: We show that ingression of the endodermal precursor cells is regulated by pathways, including a Wnt-Frizzled signaling pathway, that specify endodermal cell fate. We find that Wnt signaling has a role in gastrulation in addition to its earlier roles in regulating endodermal cell fate and cell-cycle timing. In the absence of Wnt signaling, endodermal precursor cells polarize and enrich myosin II apically but fail to contract their apical surfaces. We show that a regulatory myosin light chain normally becomes phosphorylated on the apical side of ingressing cells at a conserved site that can lead to myosin-filament formation and contraction of actomyosin networks and that this phosphorylation depends on Wnt signaling. CONCLUSIONS: We conclude that Wnt signaling regulates C. elegans gastrulation through regulatory myosin light-chain phosphorylation, which results in the contraction of the apical surface of ingressing cells. These findings forge new links between cell-fate specification and morphogenesis, and they represent a novel mechanism by which Wnt signaling can regulate morphogenesis.


Asunto(s)
Actomiosina/fisiología , Caenorhabditis elegans/embriología , Receptores Frizzled/metabolismo , Gástrula/fisiología , Morfogénesis/fisiología , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Animales , Microscopía Fluorescente , Modelos Biológicos , Fosforilación , Interferencia de ARN
20.
Dev Cell ; 11(3): 273-4, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16950117

RESUMEN

Polarization of the C. elegans embryo depends on the sperm-contributed centrosome, which cues a retraction of the actomyosin cortex to the opposite end of the embryo by an unknown mechanism. New evidence reveals that the sperm donates a second polarizing cue that may locally relax the actomyosin cortex near the point of sperm entry.


Asunto(s)
Actomiosina/metabolismo , Tipificación del Cuerpo , Caenorhabditis elegans/embriología , Centrosoma/fisiología , Espermatozoides/fisiología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Masculino , Modelos Biológicos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA