Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Elife ; 102021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33494860

RESUMEN

Dendrites shape information flow in neurons. Yet, there is little consensus on the level of spatial complexity at which they operate. Through carefully chosen parameter fits, solvable in the least-squares sense, we obtain accurate reduced compartmental models at any level of complexity. We show that (back-propagating) action potentials, Ca2+ spikes, and N-methyl-D-aspartate spikes can all be reproduced with few compartments. We also investigate whether afferent spatial connectivity motifs admit simplification by ablating targeted branches and grouping affected synapses onto the next proximal dendrite. We find that voltage in the remaining branches is reproduced if temporal conductance fluctuations stay below a limit that depends on the average difference in input resistance between the ablated branches and the next proximal dendrite. Furthermore, our methodology fits reduced models directly from experimental data, without requiring morphological reconstructions. We provide software that automatizes the simplification, eliminating a common hurdle toward including dendritic computations in network models.


Asunto(s)
Potenciales de Acción/fisiología , Dendritas/fisiología , Sinapsis/fisiología
2.
J Neurosci ; 40(46): 8799-8815, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33046549

RESUMEN

Signal propagation in the dendrites of many neurons, including cortical pyramidal neurons in sensory cortex, is characterized by strong attenuation toward the soma. In contrast, using dual whole-cell recordings from the apical dendrite and soma of layer 5 (L5) pyramidal neurons in the anterior cingulate cortex (ACC) of adult male mice we found good coupling, particularly of slow subthreshold potentials like NMDA spikes or trains of EPSPs from dendrite to soma. Only the fastest EPSPs in the ACC were reduced to a similar degree as in primary somatosensory cortex, revealing differential low-pass filtering capabilities. Furthermore, L5 pyramidal neurons in the ACC did not exhibit dendritic Ca2+ spikes as prominently found in the apical dendrite of S1 (somatosensory cortex) pyramidal neurons. Fitting the experimental data to a NEURON model revealed that the specific distribution of Ileak, Iir, Im , and Ih was sufficient to explain the electrotonic dendritic structure causing a leaky distal dendritic compartment with correspondingly low input resistance and a compact perisomatic region, resulting in a decoupling of distal tuft branches from each other while at the same time efficiently connecting them to the soma. Our results give a biophysically plausible explanation of how a class of prefrontal cortical pyramidal neurons achieve efficient integration of subthreshold distal synaptic inputs compared with the same cell type in sensory cortices.SIGNIFICANCE STATEMENT Understanding cortical computation requires the understanding of its fundamental computational subunits. Layer 5 pyramidal neurons are the main output neurons of the cortex, integrating synaptic inputs across different cortical layers. Their elaborate dendritic tree receives, propagates, and transforms synaptic inputs into action potential output. We found good coupling of slow subthreshold potentials like NMDA spikes or trains of EPSPs from the distal apical dendrite to the soma in pyramidal neurons in the ACC, which was significantly better compared with S1. This suggests that frontal pyramidal neurons use a different integration scheme compared with the same cell type in somatosensory cortex, which has important implications for our understanding of information processing across different parts of the neocortex.


Asunto(s)
Dendritas/fisiología , Giro del Cíngulo/fisiología , Células Piramidales/fisiología , Corteza Somatosensorial/fisiología , Potenciales de Acción/fisiología , Animales , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Receptores de N-Metil-D-Aspartato/fisiología
3.
Eur J Neurosci ; 37(1): 10-22, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23066968

RESUMEN

The polysialylated form of the neuronal cell adhesion molecule (PSA-NCAM) is expressed by immature neurons in the amygdala of adult mammals, including non-human primates. In a recent report we have also described the presence of PSA-NCAM-expressing cells in the amygdala of adult humans. Although many of these cells have been classified as mature interneurons, some of them lacked mature neuronal markers, suggesting the presence of immature neurons. We have studied, using immunohistochemistry, the existence and distribution of these immature neurons using post mortem material. We have also analysed the presence of proliferating cells and the association between immature neurons and specialised astrocytes. These parameters have also been studied for comparative purposes in the amygdalae of cats and squirrel monkeys. Our results demonstrate that cells coexpressing doublecortin and PSA-NCAM, but lacking neuronal nuclear antigen expression, were present in the amygdala of adult humans. These cells were organised in elongated clusters, which were located between the white matter of the dorsal hippocampus and the basolateral amygdaloid nucleus. These clusters were not associated with astroglial specialised structures. No cells expressing the proliferative marker Ki67 were observed in the amygdaloid parenchyma, although some of them were found in the vicinity of the lateral ventricle. Immature neurons were also present in the amygdala of squirrel monkeys and cats. These cells also appeared clustered in monkeys, although not as organised as in humans. In cats these cells are scarce, appear isolated and most of the PSA-NCAM-expressing structures corresponded to processes apparently originating from the paleocortical layer II.


Asunto(s)
Células Madre Adultas/metabolismo , Amígdala del Cerebelo/citología , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Ácidos Siálicos/metabolismo , Adulto , Anciano , Amígdala del Cerebelo/metabolismo , Animales , Astrocitos/metabolismo , Biomarcadores/metabolismo , Gatos , Proteínas de Dominio Doblecortina , Femenino , Humanos , Antígeno Ki-67/metabolismo , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Neuropéptidos/metabolismo , Saimiri
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA