Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Cell Metab ; 31(3): 642-653.e6, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130885

RESUMEN

Hydrogen peroxide (H2O2) is a key redox intermediate generated within cells. Existing probes for H2O2 have not solved the problem of detection of the ultra-low concentrations of the oxidant: these reporters are not sensitive enough, or pH-dependent, or insufficiently bright, or not functional in mammalian cells, or have poor dynamic range. Here we present HyPer7, the first bright, pH-stable, ultrafast, and ultrasensitive ratiometric H2O2 probe. HyPer7 is fully functional in mammalian cells and in other higher eukaryotes. The probe consists of a circularly permuted GFP integrated into the ultrasensitive OxyR domain from Neisseria meningitidis. Using HyPer7, we were able to uncover the details of H2O2 diffusion from the mitochondrial matrix, to find a functional output of H2O2 gradients in polarized cells, and to prove the existence of H2O2 gradients in wounded tissue in vivo. Overall, HyPer7 is a probe of choice for real-time H2O2 imaging in various biological contexts.


Asunto(s)
Movimiento Celular , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Oxidantes/metabolismo , Animales , Transporte Biológico , Extensiones de la Superficie Celular/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Células HeLa , Humanos , Imagenología Tridimensional , Larva/metabolismo , Membranas Mitocondriales/metabolismo , Pez Cebra
2.
Proc Natl Acad Sci U S A ; 116(42): 21256-21261, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31578252

RESUMEN

Hydrogen peroxide (H2O2) is an important messenger molecule for diverse cellular processes. H2O2 oxidizes proteinaceous cysteinyl thiols to sulfenic acid, also known as S-sulfenylation, thereby affecting the protein conformation and functionality. Although many proteins have been identified as S-sulfenylation targets in plants, site-specific mapping and quantification remain largely unexplored. By means of a peptide-centric chemoproteomics approach, we mapped 1,537 S-sulfenylated sites on more than 1,000 proteins in Arabidopsis thaliana cells. Proteins involved in RNA homeostasis and metabolism were identified as hotspots for S-sulfenylation. Moreover, S-sulfenylation frequently occurred on cysteines located at catalytic sites of enzymes or on cysteines involved in metal binding, hinting at a direct mode of action for redox regulation. Comparison of human and Arabidopsis S-sulfenylation datasets provided 155 conserved S-sulfenylated cysteines, including Cys181 of the Arabidopsis MITOGEN-ACTIVATED PROTEIN KINASE4 (AtMAPK4) that corresponds to Cys161 in the human MAPK1, which has been identified previously as being S-sulfenylated. We show that, by replacing Cys181 of recombinant AtMAPK4 by a redox-insensitive serine residue, the kinase activity decreased, indicating the importance of this noncatalytic cysteine for the kinase mechanism. Altogether, we quantitatively mapped the S-sulfenylated cysteines in Arabidopsis cells under H2O2 stress and thereby generated a comprehensive view on the S-sulfenylation landscape that will facilitate downstream plant redox studies.


Asunto(s)
Arabidopsis/metabolismo , Proteínas/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Dominio Catalítico/fisiología , Cisteína/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Oxidación-Reducción , ARN/metabolismo , Serina/metabolismo , Transducción de Señal/fisiología , Ácidos Sulfénicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA