Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Biol Reprod ; 111(3): 557-566, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-38832705

RESUMEN

Following blastocyst hatching, ungulate embryos undergo a prolonged preimplantation period termed conceptus elongation. Conceptus elongation constitutes a highly susceptible period for embryonic loss, and the embryonic requirements during this process are largely unknown, but multiple lipid compounds have been identified in the fluid nourishing the elongating conceptuses. Peroxisome proliferator-activated receptors mediate the signaling actions of prostaglandins and other lipids, and, between them, PPARG has been pointed out to play a relevant role in conceptus elongation by a functional study that depleted PPARG in both uterus and conceptus. The objective of this study has been to determine if embryonic PPARG is required for bovine embryo development. To that aim, we have generated bovine PPARG knock-out embryos in vitro using two independent gene ablation strategies and assessed their developmental ability. In vitro development to Day 8 blastocyst was unaffected by PPARG ablation, as total, inner cell mass, and trophectoderm cell numbers were similar between wild-type and knock-out D8 embryos. In vitro post-hatching development to D12 was also comparable between different genotypes, as embryo diameter, epiblast cell number, embryonic disk formation, and hypoblast migration rates were unaffected by the ablation. The development of tubular stages equivalent to E14 was assessed in vivo, following a heterologous embryo transfer experiment, observing that the development of extra-embryonic membranes and of the embryonic disk was not altered by PPARG ablation. In conclusion, PPARG ablation did not impaired bovine embryo development up to tubular stages.


Asunto(s)
Desarrollo Embrionario , PPAR gamma , Animales , Bovinos/embriología , Desarrollo Embrionario/fisiología , PPAR gamma/metabolismo , PPAR gamma/genética , Femenino , Blastocisto/metabolismo , Blastocisto/fisiología , Embrión de Mamíferos , Técnicas de Cultivo de Embriones , Técnicas de Inactivación de Genes
2.
Reproduction ; 167(6)2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552319

RESUMEN

In brief: MEK signalling pathway is required for hypoblast differentiation in mouse embryos, but its role in ungulate embryos remains controversial. This paper demonstrates that MEK is required for hypoblast specification in the inner cell mass of the ovine blastocyst and that it plays a role during the hypoblast migration occurring following blastocyst hatching. Abstract: Early embryo development requires the differentiation of three cell lineages in two differentiation events. The second lineage specification differentiates the inner cell mass into epiblast, which will form the proper fetus, and hypoblast, which together with the trophectoderm will form the extraembryonic membranes and the fetal part of the placenta. MEK signalling pathway is required for hypoblast differentiation in mouse embryos, but its role in ungulate embryos remains controversial. The aim of this work was to analyse the role of MEK signalling on hypoblast specification at the blastocyst stage and on hypoblast migration during post-hatching stages in vitro in the ovine species. Using well-characterized and reliable lineage markers, and different MEK inhibitor concentrations, we demonstrate that MEK signalling pathway is required for hypoblast specification in the inner cell mass of the ovine blastocyst, and that it plays a role during the hypoblast migration occurring following blastocyst hatching. These results show that the role of MEK signalling pathway on hypoblast specification is conserved in phylogenetically distant mammals.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Desarrollo Embrionario , Sistema de Señalización de MAP Quinasas , Animales , Femenino , Embarazo , Blastocisto/metabolismo , Blastocisto/citología , Masa Celular Interna del Blastocisto/metabolismo , Masa Celular Interna del Blastocisto/citología , Linaje de la Célula , Ovinos , Transducción de Señal , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA