Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Biol Res ; 57(1): 52, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127708

RESUMEN

BACKGROUND: Common bean (Phaseolus vulgaris) is one of the main nutritional resources in the world, and a low environmental impact source of protein. However, the majority of its cultivation areas are affected by drought and this scenario is only expected to worsen with climate change. Stomatal closure is one of the most important plant responses to drought and the MYB60 transcription factor is among the key elements regulating stomatal aperture. If targeting and mutating the MYB60 gene of common bean would be a valuable strategy to establish more drought-tolerant beans was therefore investigated. RESULTS: The MYB60 gene of common bean, with orthology to the Arabidopsis AtMYB60 gene, was found to have conserved regions with MYB60 typical motifs and architecture. Stomata-specific expression of PvMYB60 was further confirmed by q-RT PCR on organs containing stomata, and stomata-enriched leaf fractions. Further, function of PvMYB60 in promoting stomata aperture was confirmed by complementing the defective phenotype of a previously described Arabidopsis myb60-1 mutant. CONCLUSIONS: Our study finally points PvMYB60 as a potential target for obtaining more drought-tolerant common beans in the present context of climate change which would further greatly contribute to food security particularly in drought-prone countries.


Asunto(s)
Cambio Climático , Sequías , Phaseolus , Phaseolus/genética , Phaseolus/fisiología , Factores de Transcripción/genética , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Arabidopsis/fisiología , Resistencia a la Sequía
2.
Front Plant Sci ; 13: 964732, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325565

RESUMEN

Grapevine is a fruit crop of major significance worldwide. Fungal attacks are one of the most relevant factors affecting grapevine yield and fruit quality, and powdery mildew caused by Erysiphe necator is one of the most harmful fungal diseases for this fruit-bearing species. Incorporating resistance genes such as Run1 and Ren1 in new vine selections offers a sustainable alternative to control the disease. These combined loci produce an immune response that prevents the development of the disease. However, to date studies are lacking concerning whether this response generates alterations in the physiological and antioxidant parameters of resistant plants in the presence of the fungus or if it has an associated energy cost. Therefore, the main goal of our research was to determine if Run1Ren1 plants present alterations in their physiological and biochemical parameters in the presence of the fungus. To achieve this target, a previously characterized resistant Run1Ren1 genotype and the susceptible Carménère cultivar were analyzed. We evaluated photochemical parameters (Fv'/Fm', ΦPSII and ETR), net photosynthesis (Pn), photosynthetic pigments, transpiration (E), stomatal conductance (gs ), oxidative stress parameters (MDA), antioxidant activity, and phenols. Our results show that the physiological parameters of Run1Ren1 plants were not negatively affected by the fungus at 10 days post-inoculation, contrasting with alterations observed in the susceptible plants. Therefore, we propose that the resistance response triggered by Run1Ren1 is physiologically and biochemically advantageous to grapevines by preventing the development of powdery mildew infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA