Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biochem J ; 481(8): 569-585, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38563463

RESUMEN

Homocystinuria is a rare disease caused by mutations in the CBS gene that results in a deficiency of cystathionine ß-synthase (CBS). CBS is an essential pyridoxal 5'-phosphate (PLP)-dependent enzyme in the transsulfuration pathway, responsible for combining serine with homocysteine to produce cystathionine, whose activity is enhanced by the allosteric regulator S-adenosylmethionine (SAM). CBS also plays a role in generating hydrogen sulfide (H2S), a gaseous signaling molecule with diverse regulatory functions within the vascular, nervous, and immune systems. In this study, we present the clinical and biochemical characterization of two novel CBS missense mutations that do not respond to pyridoxine treatment, namely c.689T > A (L230Q) and 215A > T (K72I), identified in a Chinese patient. We observed that the disease-associated K72I genetic variant had no apparent effects on the spectroscopic and catalytic properties of the full-length enzyme. In contrast, the L230Q variant expressed in Escherichia coli did not fully retain heme and when compared with the wild-type enzyme, it exhibited more significant impairments in both the canonical cystathionine-synthesis and the alternative H2S-producing reactions. This reduced activity is consistent with both in vitro and in silico evidence, which indicates that the L230Q mutation significantly decreases the overall protein's stability, which in turn, may represent the underlying cause of its pathogenicity.


Asunto(s)
Cistationina betasintasa , Homocistinuria , Mutación Missense , Cistationina betasintasa/genética , Cistationina betasintasa/química , Cistationina betasintasa/metabolismo , Homocistinuria/genética , Homocistinuria/metabolismo , Homocistinuria/enzimología , Humanos , Masculino , Femenino
2.
Sci Rep ; 14(1): 9364, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654065

RESUMEN

The escalating drug resistance among microorganisms underscores the urgent need for innovative therapeutic strategies and a comprehensive understanding of bacteria's defense mechanisms against oxidative stress and antibiotics. Among the recently discovered barriers, the endogenous production of hydrogen sulfide (H2S) via the reverse transsulfuration pathway, emerges as a noteworthy factor. In this study, we have explored the catalytic capabilities and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa (PaCGL), a multidrug-opportunistic pathogen chiefly responsible for nosocomial infections. In addition to a canonical L-cystathionine hydrolysis, PaCGL efficiently catalyzes the production of H2S using L-cysteine and/or L-homocysteine as alternative substrates. Comparative analysis with the human enzyme and counterparts from other pathogens revealed distinct structural features within the primary enzyme cavities. Specifically, a distinctly folded entrance loop could potentially modulate the access of substrates and/or inhibitors to the catalytic site. Our findings offer significant insights into the structural evolution of CGL enzymes across different pathogens and provide novel opportunities for developing specific inhibitors targeting PaCGL.


Asunto(s)
Dominio Catalítico , Cistationina gamma-Liasa , Sulfuro de Hidrógeno , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzimología , Cistationina gamma-Liasa/metabolismo , Cistationina gamma-Liasa/química , Cristalografía por Rayos X , Especificidad por Sustrato , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/química , Modelos Moleculares , Cisteína/metabolismo , Cisteína/química , Conformación Proteica , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Humanos , Homocisteína/metabolismo , Homocisteína/química , Catálisis
3.
Sci Rep ; 14(1): 6917, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519529

RESUMEN

Variants in the CNNM2 gene are causative for hypomagnesaemia, seizures and intellectual disability, although the phenotypes can be variable. This study aims to understand the genotype-phenotype relationship in affected individuals with CNNM2 variants by phenotypic, functional and structural analysis of new as well as previously reported variants. This results in the identification of seven variants that significantly affect CNNM2-mediated Mg2+ transport. Pathogenicity of these variants is further supported by structural modelling, which predicts CNNM2 structure to be affected by all of them. Strikingly, seizures and intellectual disability are absent in 4 out of 7 cases, indicating these phenotypes are caused either by specific CNNM2 variant only or by additional risk factors. Moreover, in line with sporadic observations from previous reports, CNNM2 variants might be associated with disturbances in parathyroid hormone and Ca2+ homeostasis.


Asunto(s)
Proteínas de Transporte de Catión , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Magnesio/metabolismo , Convulsiones/genética , Fenotipo , Proteínas de Transporte de Catión/genética
4.
Cell Rep ; 43(3): 113924, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38507413

RESUMEN

The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum. Mechanistically, SUMOylation induces a structural rearrangement of the RNA recognition motifs that modulates HuR binding affinity to its target RNAs, further modifying the transcriptomic profile toward hepatic tumor progression. Overall, SUMOylation constitutes a mechanism of HuR regulation that could be potentially exploited as a therapeutic strategy for liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/metabolismo , Modelos Animales de Enfermedad , Proteína 1 Similar a ELAV/metabolismo , Neoplasias Hepáticas/patología , ARN/metabolismo , Sumoilación
5.
JHEP Rep ; 6(1): 100918, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38192540

RESUMEN

Background & Aims: Current therapies for the treatment of alcohol-related liver disease (ALD) have proven largely ineffective. Patients relapse and the disease progresses even after liver transplantation. Altered epigenetic mechanisms are characteristic of alcohol metabolism given excessive acetate and NAD depletion and play an important role in liver injury. In this regard, novel therapeutic approaches based on epigenetic modulators are increasingly proposed. MicroRNAs, epigenetic modulators acting at the post-transcriptional level, appear to be promising new targets for the treatment of ALD. Methods: MiR-873-5p levels were measured in 23 liver tissue from Patients with ALD, and GNMT levels during ALD were confirmed using expression databases (transcriptome n = 62, proteome n = 68). High-resolution proteomics and metabolomics in mice following the Gao-binge model were used to investigate miR-873-5p expression in ALD. Hepatocytes exposed to 50 mM alcohol for 12 h were used to study toxicity. The effect of anti-miR-873-5p in the treatment outcomes of ALD was investigated. Results: The analysis of human and preclinical ALD samples revealed increased expression of miR-873-5p in the liver. Interestingly, there was an inverse correlation with NNMT, suggesting a novel mechanism for NAD depletion and aberrant acetylation during ALD progression. High-resolution proteomics and metabolomics identified miR-873-5p as a key regulator of NAD metabolism and SIRT1 deacetylase activity. Anti-miR-873-5p reduced NNMT activity, fuelled the NAD salvage pathway, restored the acetylome, and modulated the levels of NF-κB and FXR, two known SIRT1 substrates, thereby protecting the liver from apoptotic and inflammatory processes, and improving bile acid homeostasis. Conclusions: These data indicate that targeting miR-873-5p, a repressor of GNMT previously associated with NAFLD and acetaminophen-induced liver failure. is a novel and attractive approach to treating alcohol-induced hepatoxicity. Impact and implications: The role of miR-873-5p has not been explicitly examined in the progression of ALD, a pathology with no therapeutic options. In this study, inhibiting miR-873-5p exerted hepatoprotective effects against ALD through rescued SIRT1 activity and consequently restored bile acid homeostasis and attenuated the inflammatory response. Targeting hepatic miR-873-5p may represent a novel therapeutic approach for the treatment of ALD.

6.
Adv Nutr ; 14(4): 739-751, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37207838

RESUMEN

Within the organism, the liver is the main organ responsible for metabolic homeostasis and xenobiotic transformation. To maintain an adequate liver weight-to-bodyweight ratio, this organ has an extraordinary regenerative capacity and is able to respond to an acute insult or partial hepatectomy. Maintenance of hepatic homeostasis is crucial for the proper functioning of the liver, and in this context, adequate nutrition with macro- and micronutrient intake is mandatory. Among all known macro-minerals, magnesium has a key role in energy metabolism and in metabolic and signaling pathways that maintain liver function and physiology throughout its life span. In the present review, the cation is reported as a potential key molecule during embryogenesis, liver regeneration, and aging. The exact role of the cation during liver formation and regeneration is not fully understood due to its unclear role in the activation and inhibition of those processes, and further research in a developmental context is needed. As individuals age, they may develop hypomagnesemia, a condition that aggravates the characteristic alterations. Additionally, risk of developing liver pathologies increases with age, and hypomagnesemia may be a contributing factor. Therefore, magnesium loss must be prevented by adequate intake of magnesium-rich foods such as seeds, nuts, spinach, or rice to prevent age-related hepatic alterations and contribute to the maintenance of hepatic homeostasis. Since magnesium-rich sources include a variety of foods, a varied and balanced diet can meet both macronutrient and micronutrient needs.


Asunto(s)
Longevidad , Magnesio , Humanos , Estado Nutricional , Hígado , Envejecimiento
7.
Proteins ; 91(10): 1383-1393, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37163386

RESUMEN

Cystathionine ß-synthase (CBS) catalyzes the condensation of l-serine and l-homocysteine to give l-cystathionine in the transsulfuration pathway. Recently, a few O-acetylserine (l-OAS)-dependent CBSs (OCBSs) have been found in bacteria that can exclusively function with l-OAS. CBS from Toxoplasma gondii (TgCBS) can efficiently use both l-serine and l-OAS to form l-cystathionine. In this work, a series of site-specific variants substituting S84, Y160, and Y246 with hydrophobic residues found at the same positions in OCBSs was generated to explore the roles of the hydroxyl moieties of these residues as determinants of l-serine/l-OAS preference in TgCBS. We found that the S84A/Y160F/Y246V triple mutant behaved like an OCBS in terms of both substrate requirements, showing ß-replacement activity only with l-OAS, and pH optimum, which is decreased by ~1 pH unit. Formation of a stable aminoacrylate upon reaction with l-serine is prevented by the triple mutation, indicating the importance of the H-bonds between the hydroxyl groups of Y160, Y246, and S84 with l-serine in formation of the intermediate. Analysis of the independent effect of each mutation on TgCBS activity and investigation of the protein-aminoacrylate complex structure allowed for the conclusion that the hydroxyl group of Y246 has a major, but not exclusive, role in controlling the l-serine preference by efficiently stabilizing its leaving group. These studies demonstrate that differences in substrate specificity of CBSs are controlled by natural variations in as few as three residue positions. A better understanding of substrate specificity in TgCBS will facilitate the design of new antimicrobial compounds.


Asunto(s)
Cistationina betasintasa , Toxoplasma , Cistationina betasintasa/genética , Cistationina betasintasa/química , Cistationina betasintasa/metabolismo , Cistationina/química , Cistationina/metabolismo , Dominio Catalítico , Toxoplasma/genética , Toxoplasma/metabolismo , Serina/metabolismo , Cinética
8.
Protein Sci ; 32(4): e4619, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36883335

RESUMEN

Cystathionine γ-lyase (CGL) is a PLP-dependent enzyme that catalyzes the last step of the reverse transsulfuration route for endogenous cysteine biosynthesis. The canonical CGL-catalyzed process consists of an α,γ-elimination reaction that breaks down cystathionine into cysteine, α-ketobutyrate, and ammonia. In some species, the enzyme can alternatively use cysteine as a substrate, resulting in the production of hydrogen sulfide (H2 S). Importantly, inhibition of the enzyme and consequently of its H2 S production activity, makes multiresistant bacteria considerably more susceptible to antibiotics. Other organisms, such as Toxoplasma gondii, the causative agent of toxoplasmosis, encode a CGL enzyme (TgCGL) that almost exclusively catalyzes the canonical process, with only minor reactivity to cysteine. Interestingly, the substitution of N360 by a serine (the equivalent amino acid residue in the human enzyme) at the active site changes the specificity of TgCGL for the catalysis of cystathionine, resulting in an enzyme that can cleave both the CγS and the CßS bond of cystathionine. Based on these findings and to deepen the molecular basis underlying the enzyme-substrate specificity, we have elucidated the crystal structures of native TgCGL and the variant TgCGL-N360S from crystals grown in the presence of cystathionine, cysteine, and the inhibitor d,l-propargylglycine (PPG). Our structures reveal the binding mode of each molecule within the catalytic cavity and help explain the inhibitory behavior of cysteine and PPG. A specific inhibitory mechanism of TgCGL by PPG is proposed.


Asunto(s)
Cistationina gamma-Liasa , Toxoplasma , Humanos , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/metabolismo , Cisteína , Toxoplasma/metabolismo , Cistationina/metabolismo
9.
Hepatology ; 78(3): 878-895, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36745935

RESUMEN

BACKGROUND AND AIMS: Alcohol-associated liver disease (ALD) accounts for 70% of liver-related deaths in Europe, with no effective approved therapies. Although mitochondrial dysfunction is one of the earliest manifestations of alcohol-induced injury, restoring mitochondrial activity remains a problematic strategy due to oxidative stress. Here, we identify methylation-controlled J protein (MCJ) as a mediator for ALD progression and hypothesize that targeting MCJ may help in recovering mitochondrial fitness without collateral oxidative damage. APPROACH AND RESULTS: C57BL/6 mice [wild-type (Wt)] Mcj knockout and Mcj liver-specific silencing (MCJ-LSS) underwent the NIAAA dietary protocol (Lieber-DeCarli diet containing 5% (vol/vol) ethanol for 10 days, plus a single binge ethanol feeding at day 11). To evaluate the impact of a restored mitochondrial activity in ALD, the liver, gut, and pancreas were characterized, focusing on lipid metabolism, glucose homeostasis, intestinal permeability, and microbiota composition. MCJ, a protein acting as an endogenous negative regulator of mitochondrial respiration, is downregulated in the early stages of ALD and increases with the severity of the disease. Whole-body deficiency of MCJ is detrimental during ALD because it exacerbates the systemic effects of alcohol abuse through altered intestinal permeability, increased endotoxemia, and dysregulation of pancreatic function, which overall worsens liver injury. On the other hand, liver-specific Mcj silencing prevents main ALD hallmarks, that is, mitochondrial dysfunction, steatosis, inflammation, and oxidative stress, as it restores the NAD + /NADH ratio and SIRT1 function, hence preventing de novo lipogenesis and improving lipid oxidation. CONCLUSIONS: Improving mitochondrial respiration by liver-specific Mcj silencing might become a novel therapeutic approach for treating ALD.


Asunto(s)
Hepatopatías Alcohólicas , Animales , Ratones , Ratones Endogámicos C57BL , Hepatopatías Alcohólicas/metabolismo , Hígado/metabolismo , Etanol/efectos adversos , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Mitocondriales/metabolismo
10.
Nat Commun ; 13(1): 6816, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36433951

RESUMEN

Acetaminophen overdose is one of the leading causes of acute liver failure and liver transplantation in the Western world. Magnesium is essential in several cellular processess. The Cyclin M family is involved in magnesium transport across cell membranes. Herein, we identify that among all magnesium transporters, only Cyclin M4 expression is upregulated in the liver of patients with acetaminophen overdose, with disturbances in magnesium serum levels. In the liver, acetaminophen interferes with the mitochondrial magnesium reservoir via Cyclin M4, affecting ATP production and reactive oxygen species generation, further boosting endoplasmic reticulum stress. Importantly, Cyclin M4 mutant T495I, which impairs magnesium flux, shows no effect. Finally, an accumulation of Cyclin M4 in endoplasmic reticulum is shown under hepatoxicity. Based on our studies in mice, silencing hepatic Cyclin M4 within the window of 6 to 24 h following acetaminophen overdose ingestion may represent a therapeutic target for acetaminophen overdose induced liver injury.


Asunto(s)
Acetaminofén , Proteínas de Transporte de Catión , Enfermedad Hepática Inducida por Sustancias y Drogas , Hepatopatías , Magnesio , Animales , Ratones , Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Ciclinas/genética , Ciclinas/metabolismo , Hepatopatías/sangre , Hepatopatías/genética , Hepatopatías/prevención & control , Magnesio/sangre , Magnesio/uso terapéutico , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo
11.
Commun Biol ; 5(1): 827, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35978143

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a multi-organ damage that includes hepatic dysfunction, which has been observed in over 50% of COVID-19 patients. Liver injury in COVID-19 could be attributed to the cytopathic effects, exacerbated immune responses or treatment-associated drug toxicity. Herein we demonstrate that hepatocytes are susceptible to infection in different models: primary hepatocytes derived from humanized angiotensin-converting enzyme-2 mice (hACE2) and primary human hepatocytes. Pseudotyped viral particles expressing the full-length spike of SARS-CoV-2 and recombinant receptor binding domain (RBD) bind to ACE2 expressed by hepatocytes, promoting metabolic reprogramming towards glycolysis but also impaired mitochondrial activity. Human and hACE2 primary hepatocytes, where steatosis and inflammation were induced by methionine and choline deprivation, are more vulnerable to infection. Inhibition of the renin-angiotensin system increases the susceptibility of primary hepatocytes to infection with pseudotyped viral particles. Metformin, a common therapeutic option for hyperglycemia in type 2 diabetes patients known to partially attenuate fatty liver, reduces the infection of human and hACE2 hepatocytes. In summary, we provide evidence that hepatocytes are amenable to infection with SARS-CoV-2 pseudovirus, and we propose that metformin could be a therapeutic option to attenuate infection by SARS-CoV-2 in patients with fatty liver.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Diabetes Mellitus Tipo 2 , Hígado Graso , Metformina , Animales , Hepatocitos/metabolismo , Humanos , Metformina/farmacología , Ratones , Peptidil-Dipeptidasa A , SARS-CoV-2
12.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897745

RESUMEN

Cystathionine beta-synthase (CBS) is a key regulator of homocysteine metabolism. Although eukaryotic CBS have a similar domain architecture with a catalytic core and a C-terminal Bateman module, their regulation varies widely across phyla. In human CBS (HsCBS), the C-terminus has an autoinhibitory effect by acting as a cap that avoids the entry of substrates into the catalytic site. The binding of the allosteric modulator AdoMet to this region alleviates this cap, allowing the protein to progress from a basal toward an activated state. The same activation is obtained by artificial removal or heat-denaturation of the Bateman module. Recently, we reported the crystal structure of CBS from Toxoplasma gondii (TgCBS) showing that the enzyme assembles into basket-like dimers similar to the basal conformers of HsCBS. These findings would suggest a similar lid function for the Bateman module which, as in HsCBS, should relax in the absence of the C-terminal module. However, herein we demonstrate that, in contrast with HsCBS, removal of the Bateman module in TgCBS through deletion mutagenesis, limited proteolysis, or thermal denaturation has no effects on its activity, oligomerization, and thermal stability. This opposite behavior we have now found in TgCBS provides evidence of a novel type of CBS regulation.


Asunto(s)
Cistationina betasintasa , Toxoplasma , Dominio Catalítico , Humanos , S-Adenosilmetionina/metabolismo , Toxoplasma/metabolismo
13.
Antioxidants (Basel) ; 11(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35624761

RESUMEN

Drug-induced liver injury (DILI) development is commonly associated with acetaminophen (APAP) overdose, where glutathione scavenging leads to mitochondrial dysfunction and hepatocyte death. DILI is a severe disorder without effective late-stage treatment, since N-acetyl cysteine must be administered 8 h after overdose to be efficient. Ammonia homeostasis is altered during liver diseases and, during DILI, it is accompanied by decreased glycine N-methyltransferase (GNMT) expression and S-adenosylmethionine (AdoMet) levels that suggest a reduced methionine cycle. Anti-miR-873-5p treatment prevents cell death in primary hepatocytes and the appearance of necrotic areas in liver from APAP-administered mice. In our study, we demonstrate a GNMT and methionine cycle activity restoration by the anti-miR-873-5p that reduces mitochondrial dysfunction and oxidative stress. The lack of hyperammoniemia caused by the therapy results in a decreased urea cycle, enhancing the synthesis of polyamines from ornithine and AdoMet and thus impacting the observed recovery of mitochondria and hepatocyte proliferation for regeneration. In summary, anti-miR-873-5p appears to be an effective therapy against APAP-induced liver injury, where the restoration of GNMT and the methionine cycle may prevent mitochondrial dysfunction while activating hepatocyte proliferative response.

14.
Comput Struct Biotechnol J ; 19: 3542-3555, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194677

RESUMEN

Cysteine plays a major role in the redox homeostasis and antioxidative defense mechanisms of many parasites of the phylum Apicomplexa. Of relevance to human health is Toxoplasma gondii, the causative agent of toxoplasmosis. A major route of cysteine biosynthesis in this parasite is the reverse transsulfuration pathway involving two key enzymes cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CGL). CBS from T. gondii (TgCBS) catalyzes the pyridoxal-5́-phosphate-dependent condensation of homocysteine with either serine or O-acetylserine to produce cystathionine. The enzyme can perform alternative reactions that use homocysteine and cysteine as substrates leading to the endogenous biosynthesis of hydrogen sulfide, another key element in maintaining the intracellular redox equilibrium. In contrast with human CBS, TgCBS lacks the N-terminal heme binding domain and is not responsive to S-adenosylmethionine. Herein, we describe the structure of a TgCBS construct that lacks amino acid residues 466-491 and shows the same activity of the native protein. TgCBS Δ466-491 was determined alone and in complex with reaction intermediates. A complementary molecular dynamics analysis revealed a unique domain organization, similar to the pathogenic mutant D444N of human CBS. Our data provides one missing piece in the structural diversity of CBSs by revealing the so far unknown three-dimensional arrangement of the CBS-type of Apicomplexa. This domain distribution is also detected in yeast and bacteria like Pseudomonas aeruginosa. These results pave the way for understanding the mechanisms by which TgCBS regulates the intracellular redox of the parasite, and have far-reaching consequences for the functional understanding of CBSs with similar domain distribution.

15.
Cell Mol Life Sci ; 78(13): 5427-5445, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34089346

RESUMEN

Cyclin M (CNNM1-4) proteins maintain cellular and body magnesium (Mg2+) homeostasis. Using various biochemical approaches, we have identified members of the CNNM family as direct interacting partners of ADP-ribosylation factor-like GTPase 15 (ARL15), a small GTP-binding protein. ARL15 interacts with CNNMs at their carboxyl-terminal conserved cystathionine-ß-synthase (CBS) domains. In silico modeling of the interaction between CNNM2 and ARL15 supports that the small GTPase specifically binds the CBS1 and CNBH domains. Immunocytochemical experiments demonstrate that CNNM2 and ARL15 co-localize in the kidney, with both proteins showing subcellular localization in the endoplasmic reticulum, Golgi apparatus and the plasma membrane. Most importantly, we found that ARL15 is required for forming complex N-glycosylation of CNNMs. Overexpression of ARL15 promotes complex N-glycosylation of CNNM3. Mg2+ uptake experiments with a stable isotope demonstrate that there is a significant increase of 25Mg2+ uptake upon knockdown of ARL15 in multiple kidney cancer cell lines. Altogether, our results establish ARL15 as a novel negative regulator of Mg2+ transport by promoting the complex N-glycosylation of CNNMs.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Ciclinas/metabolismo , Homeostasis , Magnesio/metabolismo , Factores de Ribosilacion-ADP/genética , Transporte Biológico , Ciclinas/genética , Glicosilación , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica
16.
J Hepatol ; 75(1): 34-45, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33571553

RESUMEN

BACKGROUND & AIMS: Perturbations of intracellular magnesium (Mg2+) homeostasis have implications for cell physiology. The cyclin M family, CNNM, perform key functions in the transport of Mg2+ across cell membranes. Herein, we aimed to elucidate the role of CNNM4 in the development of non-alcoholic steatohepatitis (NASH). METHODS: Serum Mg2+ levels and hepatic CNNM4 expression were characterised in clinical samples. Primary hepatocytes were cultured under methionine and choline deprivation. A 0.1% methionine and choline-deficient diet, or a choline-deficient high-fat diet were used to induce NASH in our in vivo rodent models. Cnnm4 was silenced using siRNA, in vitro with DharmaFECT and in vivo with Invivofectamine® or conjugated to N-acetylgalactosamine. RESULTS: Patients with NASH showed hepatic CNNM4 overexpression and dysregulated Mg2+ levels in the serum. Cnnm4 silencing ameliorated hepatic lipid accumulation, inflammation and fibrosis in the rodent NASH models. Mechanistically, CNNM4 knockdown in hepatocytes induced cellular Mg2+ accumulation, reduced endoplasmic reticulum stress, and increased microsomal triglyceride transfer activity, which promoted hepatic lipid clearance by increasing the secretion of VLDLs. CONCLUSIONS: CNNM4 is overexpressed in patients with NASH and is responsible for dysregulated Mg2+ transport. Hepatic CNNM4 is a promising therapeutic target for the treatment of NASH. LAY SUMMARY: Cyclin M4 (CNNM4) is overexpressed in non-alcoholic steatohepatitis (NASH) and promotes the export of magnesium from the liver. The liver-specific silencing of Cnnm4 ameliorates NASH by reducing endoplasmic reticulum stress and promoting the activity of microsomal triglyceride transfer protein.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión/metabolismo , Hepatocitos/metabolismo , Magnesio , Enfermedad del Hígado Graso no Alcohólico , Animales , Transporte Biológico/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Magnesio/sangre , Magnesio/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología
17.
Biomedicines ; 9(2)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513920

RESUMEN

Non-alcoholic steatohepatitis (NASH) is characterized by an abnormal hepatic lipid accumulation accompanied by a necro-inflammatory process and a fibrotic response. It comprises from 10% to 30% of cases of patients with non-alcoholic liver disease, which is a global health problem affecting around a quarter of the worldwide population. Nevertheless, the development of NASH is often surrounded by a pathological context with other comorbidities, such as cardiovascular diseases, obesity, insulin resistance or type 2 diabetes mellitus. Dietary imbalances are increasingly recognized as the root cause of these NASH-related comorbidities. In this context, a growing concern exists about whether magnesium consumption in the general population is sufficient. Hypomagnesemia is a hallmark of the aforementioned NASH comorbidities, and deficiencies in magnesium are also widely related to the triggering of complications that aggravate NASH or derived pathologies. Moreover, the supplementation of this cation has proved to reduce mortality from hepatic complications. In the present review, the role of magnesium in NASH and related comorbidities has been characterized, unraveling the relevance of maintaining the homeostasis of this cation for the correct functioning of the organism.

18.
Sci Rep ; 10(1): 14657, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887901

RESUMEN

Cystathionine ß-synthase (CBS) catalyzes the condensation of serine and homocysteine to water and cystathionine, which is then hydrolyzed to cysteine, α-ketobutyrate and ammonia by cystathionine γ-lyase (CGL) in the reverse transsulfuration pathway. The protozoan parasite Toxoplasma gondii, the causative agent of toxoplasmosis, includes both CBS and CGL enzymes. We have recently reported that the putative T. gondii CGL gene encodes a functional enzyme. Herein, we cloned and biochemically characterized cDNA encoding CBS from T. gondii (TgCBS), which represents a first example of protozoan CBS that does not bind heme but possesses two C-terminal CBS domains. We demonstrated that TgCBS can use both serine and O-acetylserine to produce cystathionine, converting these substrates to an aminoacrylate intermediate as part of a PLP-catalyzed ß-replacement reaction. Besides a role in cysteine biosynthesis, TgCBS can also efficiently produce hydrogen sulfide, preferentially via condensation of cysteine and homocysteine. Unlike the human counterpart and similar to CBS enzymes from lower organisms, the TgCBS activity is not stimulated by S-adenosylmethionine. This study establishes the presence of an intact functional reverse transsulfuration pathway in T. gondii and demonstrates the crucial role of TgCBS in biogenesis of H2S.


Asunto(s)
Cistationina betasintasa/metabolismo , Cisteína/biosíntesis , Sulfuro de Hidrógeno/metabolismo , Toxoplasma/enzimología , Toxoplasma/genética , Biocatálisis , Cistationina/biosíntesis , Cistationina betasintasa/genética , Cistationina gamma-Liasa/metabolismo , ADN Complementario , Genes Protozoarios , Hemo/metabolismo , Homocisteína/metabolismo , Cinética , Serina/análogos & derivados , Serina/metabolismo
19.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842432

RESUMEN

The four member family of "Cyclin and Cystathionine ß-synthase (CBS) domain divalent metal cation transport mediators", CNNMs, are the least-studied mammalian magnesium transport mediators. CNNM4 is abundant in the brain and the intestinal tract, and its abnormal activity causes Jalili Syndrome. Recent findings show that suppression of CNNM4 in mice promotes malignant progression of intestinal polyps and is linked to infertility. The association of CNNM4 with phosphatases of the regenerating liver, PRLs, abrogates its Mg2+-efflux capacity, thus resulting in an increased intracellular Mg2+ concentration that favors tumor growth. Here we present the crystal structures of the two independent intracellular domains of human CNNM4, i.e., the Bateman module and the cyclic nucleotide binding-like domain (cNMP). We also derive a model structure for the full intracellular region in the absence and presence of MgATP and the oncogenic interacting partner, PRL-1. We find that only the Bateman module interacts with ATP and Mg2+, at non-overlapping sites facilitating their positive cooperativity. Furthermore, both domains dimerize autonomously, where the cNMP domain dimer forms a rigid cleft to restrict the Mg2+ induced sliding of the inserting CBS1 motives of the Bateman module, from a twisted to a flat disk shaped dimer.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Magnesio/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Transporte Biológico , Humanos , Magnesio/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Relación Estructura-Actividad
20.
Int J Mol Sci ; 20(21)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31694170

RESUMEN

In higher organisms, epithelia separate compartments in order to guarantee their proper function. Such structures are able to seal but also to allow substances to pass. Within the paracellular pathway, a supramolecular structure, the tight junction transport is largely controlled by the temporospatial regulation of its major protein family called claudins. Besides the fact that the expression of claudins has been identified in different forms of human diseases like cancer, clearly defined mutations in the corresponding claudin genes have been shown to cause distinct human disorders. Such disorders comprise the skin and its adjacent structures, liver, kidney, the inner ear, and the eye. From the phenotype analysis, it has also become clear that different claudins can cause a complex phenotype when expressed in different organs. To gain deeper insights into the physiology and pathophysiology of claudin-associated disorders, several mouse models have been generated. In order to model human disorders in detail, they have been designed either as full knockouts, knock-downs or knock-ins by a variety of techniques. Here, we review human disorders caused by CLDN mutations and their corresponding mouse models that have been generated thus far and assess their usefulness as a model for the corresponding human disorder.


Asunto(s)
Claudinas/genética , Mutación , Secuencia de Aminoácidos , Animales , Claudinas/química , Modelos Animales de Enfermedad , Oftalmopatías/genética , Humanos , Enfermedades Renales/genética , Hepatopatías/genética , Ratones , Neoplasias/genética , Enfermedades de la Piel/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA