Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biochem Pharmacol ; 224: 116185, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561091

RESUMEN

Cardiac ATP production is tightly regulated in order to satisfy the evolving energetic requirements imposed by different cues during health and pathological conditions. In order to sustain high ATP production rates, cardiac cells are endowed with a vast mitochondrial network that is essentially acquired during the perinatal period. Nevertheless, adult cardiac cells also adapt their mitochondrial mass and oxidative function to changes in energy demand and substrate availability by fine-tuning the pathways and mitochondrial machinery involved in energy production. The reliance of cardiac cells on mitochondrial metabolism makes them particularly sensitive to alterations in proper mitochondrial function, so that deficiency in energy production underlies or precipitates the development of heart diseases. Mitochondrial biogenesis is a complex process fundamentally controlled at the transcriptional level by a network of transcription factors and co-regulators, sometimes with partially redundant functions, that ensure adequate energy supply to the working heart. Novel uncovered regulators, such as RIP140, PERM1, MED1 or BRD4 have been recently shown to modulate or facilitate the transcriptional activity of the PGC-1s/ERRs/PPARs regulatory axis, allowing cardiomyocytes to adapt to a variety of physiological or pathological situations requiring different energy provision. In this review, we summarize the current knowledge on the mechanisms that regulate cardiac mitochondrial biogenesis, highlighting the recent discoveries of new transcriptional regulators and describing the experimental models that have provided solid evidence of the relevant contribution of these factors to cardiac function in health and disease.


Asunto(s)
Metabolismo Energético , Animales , Metabolismo Energético/fisiología , Metabolismo Energético/genética , Humanos , Transcripción Genética/fisiología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/genética , Cardiopatías/metabolismo , Cardiopatías/genética , Miocardio/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Modelos Animales de Enfermedad , Miocitos Cardíacos/metabolismo
2.
JCI Insight ; 9(5)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300714

RESUMEN

TAR DNA-binding protein 43 (TDP-43) is a DNA/RNA-binding protein that regulates gene expression, and its malfunction in neurons has been causally associated with multiple neurodegenerative disorders. Although progress has been made in understanding the functions of TDP-43 in neurons, little is known about its roles in endothelial cells (ECs), angiogenesis, and vascular function. Using inducible EC-specific TDP-43-KO mice, we showed that TDP-43 is required for sprouting angiogenesis, vascular barrier integrity, and blood vessel stability. Postnatal EC-specific deletion of TDP-43 led to retinal hypovascularization due to defects in vessel sprouting associated with reduced EC proliferation and migration. In mature blood vessels, loss of TDP-43 disrupted the blood-brain barrier and triggered vascular degeneration. These vascular defects were associated with an inflammatory response in the CNS with activation of microglia and astrocytes. Mechanistically, deletion of TDP-43 disrupted the fibronectin matrix around sprouting vessels and reduced ß-catenin signaling in ECs. Together, our results indicate that TDP-43 is essential for the formation of a stable and mature vasculature.


Asunto(s)
Células Endoteliales , Enfermedades Neuroinflamatorias , Ratones , Animales , Células Endoteliales/metabolismo , Angiogénesis , Neovascularización Fisiológica/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
3.
Development ; 150(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36852644

RESUMEN

Wt1 encodes a zinc finger protein that is crucial for epicardium development. Although WT1 is also expressed in coronary endothelial cells (ECs), the abnormal heart development observed in Wt1 knockout mice is mainly attributed to its functions in the epicardium. Here, we have generated an inducible endothelial-specific Wt1 knockout mouse model (Wt1KOΔEC). Deletion of Wt1 in ECs during coronary plexus formation impaired coronary blood vessels and myocardium development. RNA-Seq analysis of coronary ECs from Wt1KOΔEC mice demonstrated that deletion of Wt1 exerted a major impact on the molecular signature of coronary ECs and modified the expression of several genes that are dynamically modulated over the course of coronary EC development. Many of these differentially expressed genes are involved in cell proliferation, migration and differentiation of coronary ECs; consequently, the aforementioned processes were affected in Wt1KOΔEC mice. The requirement of WT1 in coronary ECs goes beyond the initial formation of the coronary plexus, as its later deletion results in defects in coronary artery formation. Through the characterization of these Wt1KOΔEC mouse models, we show that the deletion of Wt1 in ECs disrupts physiological blood vessel formation.


Asunto(s)
Vasos Coronarios , Células Endoteliales , Ratones , Animales , Células Endoteliales/metabolismo , Vasos Coronarios/metabolismo , Pericardio/metabolismo , Proliferación Celular/genética , Neovascularización Fisiológica/genética , Modelos Animales de Enfermedad , Ratones Noqueados , Miocardio/metabolismo , Proteínas WT1/genética
4.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674431

RESUMEN

Synaptic activity is the main energy-consuming process in the central nervous system. We are beginning to understand how energy is supplied and used during synaptic activity by neurons. However, the long-term metabolic adaptations associated with a previous episode of synaptic activity are not well understood. Herein, we show that an episode of synaptic activity increases mitochondrial bioenergetics beyond the duration of the synaptic activity by transcriptionally inducing the expression of iron metabolism genes with the consequent enhancement of cellular and mitochondrial iron uptake. Iron is a necessary component of the electron transport chain complexes, and its chelation or knockdown of mitochondrial iron transporter Mfrn1 blocks the activity-mediated bioenergetics boost. We found that Mfrn1 expression is regulated by the well-known regulator of synaptic plasticity CREB, suggesting the coordinated expression of synaptic plasticity programs with those required to meet the associated increase in energetic demands.


Asunto(s)
Metabolismo Energético , Neuronas , Neuronas/metabolismo , Mitocondrias/metabolismo , Transporte Biológico , Hierro/metabolismo
5.
Front Cell Dev Biol ; 10: 969100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874805
6.
PLoS Genet ; 18(6): e1010240, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35704566

RESUMEN

Assessing the role of the WT1 transcription factor (WT1) during early gonad differentiation and its impact on adult sex development has been difficult due to the complete gonadal agenesis and embryonic lethality exhibited by Wt1KO mouse models. Here, we generated Wt1LoxP/GFP;Wt1Cre mice, the first Wt1KO mouse model that reaches adulthood with a dramatically reduced Wt1 expression during early gonadogenesis. Wt1LoxP/GFP;Wt1Cre mice lacked mature gonads and displayed genital tracts containing both male and female genital structures and ambiguous genitalia. We found that WT1 is necessary for the activation of both male and female sex-determining pathways, as embryonic mutant gonads failed to upregulate the expression of the genes specific for each genetic programme. The gonads of Wt1LoxP/GFP;Wt1Cre mice showed a lack of production of Sertoli and pre-granulosa cells and a reduced number of germ cells. NR5A1 and the steroidogenic genes expression was modulated differently in XY and XX Wt1LoxP/GFP;Wt1Cre gonads, explaining the mutant phenotypes. Further studies of the XX Wt1LoxP/GFP;Wt1Cre gonads revealed that deletion of WT1 at an early stage impaired the differentiation of several cell types including somatic cells and the ovarian epithelium. Through the characterisation of this Wt1KO mouse model, we show that the deletion of Wt1 during early gonadogenesis produces dramatic defects in adult sex development.


Asunto(s)
Gónadas , Diferenciación Sexual , Animales , Diferenciación Celular/genética , Femenino , Gónadas/metabolismo , Masculino , Ratones , Ovario/metabolismo , Diferenciación Sexual/genética , Desarrollo Sexual , Testículo/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo
7.
EMBO Rep ; 22(9): e51954, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34296790

RESUMEN

Mfn2 is a mitochondrial fusion protein with bioenergetic functions implicated in the pathophysiology of neuronal and metabolic disorders. Understanding the bioenergetic mechanism of Mfn2 may aid in designing therapeutic approaches for these disorders. Here we show using endoplasmic reticulum (ER) or mitochondria-targeted Mfn2 that Mfn2 stimulation of the mitochondrial metabolism requires its localization in the ER, which is independent of its fusion function. ER-located Mfn2 interacts with mitochondrial Mfn1/2 to tether the ER and mitochondria together, allowing Ca2+ transfer from the ER to mitochondria to enhance mitochondrial bioenergetics. The physiological relevance of these findings is shown during neurite outgrowth, when there is an increase in Mfn2-dependent ER-mitochondria contact that is necessary for correct neuronal arbor growth. Reduced neuritic growth in Mfn2 KO neurons is recovered by the expression of ER-targeted Mfn2 or an artificial ER-mitochondria tether, indicating that manipulation of ER-mitochondria contacts could be used to treat pathologic conditions involving Mfn2.


Asunto(s)
Retículo Endoplásmico , GTP Fosfohidrolasas , Retículo Endoplásmico/metabolismo , Metabolismo Energético , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
8.
Dis Model Mech ; 14(1)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33735101

RESUMEN

Congenital diaphragmatic hernia (CDH) is a relatively common developmental defect with considerable mortality and morbidity. Formation of the diaphragm is a complex process that involves several cell types, each with different developmental origins. Owing to this complexity, the aetiology of CDH is not well understood. The pleuroperitoneal folds (PPFs) and the posthepatic mesenchymal plate (PHMP) are transient structures that are essential during diaphragm development. Using several mouse models, including lineage tracing, we demonstrate the heterogeneous nature of the cells that make up the PPFs. The conditional deletion of Wilms tumor 1 homolog (Wt1) in the non-muscle mesenchyme of the PPFs results in CDH. We show that the fusion of the PPFs and the PHMP to form a continuous band of tissue involves movements of cells from both sources. The PPFs of mutant mice fail to fuse with the PHMP and exhibit increased RALDH2 (also known as ALDH1A2) expression. However, no changes in the expression of genes (including Snai1, Snai2, Cdh1 and Vim) implicated in epithelial-to-mesenchymal transition are observed. Additionally, the mutant PPFs lack migrating myoblasts and muscle connective tissue fibroblasts (TCF4+/GATA4+), suggesting possible interactions between these cell types. Our study demonstrates the importance of the non-muscle mesenchyme in development of the diaphragm.


Asunto(s)
Diafragma/patología , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Animales , Tejido Conectivo , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Hernias Diafragmáticas Congénitas/genética , Masculino , Ratones , Desarrollo de Músculos , Factores de Tiempo , Transgenes , Proteínas WT1/metabolismo
9.
Development ; 146(20)2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31624071

RESUMEN

The epicardium plays a crucial role in embryonic heart development and adult heart repair; however, the molecular events underlying its maturation remain unknown. Wt1, one of the main markers of the embryonic epicardium, is essential for epicardial development and function. Here, we analyse the transcriptomic profile of epicardial-enriched cells at different stages of development and from control and epicardial-specific Wt1 knockout (Wt1KO) mice. Transcriptomic and cell morphology analyses of epicardial cells from epicardial-specific Wt1KO mice revealed a defect in the maturation process of the mutant epicardium, including sustained upregulation of Bmp4 expression and the inability of mutant epicardial cells to transition into a mature squamous phenotype. We identified Bmp4 as a transcriptional target of Wt1, thus providing a molecular basis for the retention of the cuboidal cell shape observed in the Wt1KO epicardium. Accordingly, inhibition of the Bmp4 signalling pathway both ex vivo and in vivo rescued the cuboidal phenotype of the mutant epicardium. Our findings indicate the importance of the cuboidal-to-squamous transition in epicardial maturation, a process regulated by Wt1.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 4/farmacología , Pericardio/citología , Pericardio/metabolismo , Proteínas WT1/metabolismo , Animales , Forma de la Célula/efectos de los fármacos , Forma de la Célula/genética , Células Cultivadas , Femenino , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Corazón/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Miocardio/metabolismo , Miocardio/ultraestructura , Pericardio/efectos de los fármacos , Pericardio/ultraestructura , Proteínas WT1/genética
10.
EMBO J ; 37(9)2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29615453

RESUMEN

The formation of neurites is an important process affecting the cognitive abilities of an organism. Neurite growth requires the addition of new membranes, but the metabolic remodeling necessary to supply lipids for membrane expansion is poorly understood. Here, we show that synaptic activity, one of the most important inducers of neurite growth, transcriptionally regulates the expression of neuronal glucose transporter Glut3 and rate-limiting enzymes of glycolysis, resulting in enhanced glucose uptake and metabolism that is partly used for lipid synthesis. Mechanistically, CREB regulates the expression of Glut3 and Siah2, the latter and LDH activity promoting the normoxic stabilization of HIF-1α that regulates the expression of rate-limiting genes of glycolysis. The expression of dominant-negative HIF-1α or Glut3 knockdown blocks activity-dependent neurite growth in vitro while pharmacological inhibition of the glycolysis and specific ablation of HIF-1α in early postnatal mice impairs the neurite architecture. These results suggest that the manipulation of neuronal glucose metabolism could be used to treat some brain developmental disorders.


Asunto(s)
Estructuras de la Membrana Celular/metabolismo , Neuritas/metabolismo , Sinapsis/metabolismo , Animales , Estructuras de la Membrana Celular/genética , Estructuras de la Membrana Celular/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/biosíntesis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Transportador de Glucosa de Tipo 3/biosíntesis , Transportador de Glucosa de Tipo 3/genética , Transportador de Glucosa de Tipo 3/metabolismo , Glucólisis/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Neuritas/patología , Ratas , Ratas Sprague-Dawley , Sinapsis/genética , Sinapsis/patología , Ubiquitina-Proteína Ligasas/biosíntesis , Ubiquitina-Proteína Ligasas/genética
11.
Methods Mol Biol ; 1467: 61-71, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27417959

RESUMEN

The embryonic epicardium is an important source of cardiovascular precursor cells and paracrine factors required for adequate heart formation. During embryonic heart formation, WT1 is mainly expressed in epicardial cells and epicardial derived cells. Its expression has been used to trace epicardial derivatives in embryos and recently it has been used to follow the reactivation of epicardial cells after myocardial infarction. Interestingly, the highest level of expression of WT1 during epicardium development correlates with the highest proliferative state, stem cell properties, and migratory capacity of epicardial cells. Here, we review the various types of tools and strategies used to study WT1 function in the embryonic epicardium and provide examples of their use.


Asunto(s)
Pericardio/citología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Biología de Sistemas/métodos , Animales , Movimiento Celular , Proliferación Celular , Separación Celular , Células Cultivadas , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica , Ratones , Pericardio/embriología , Pericardio/metabolismo , Células Madre/citología , Células Madre/metabolismo , Proteínas WT1
12.
Evol Dev ; 17(4): 224-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26174098

RESUMEN

The proepicardium is the embryonic primordium of the epicardium. This transient structure is essential for cardiac development giving rise to the epicardium and supplying the heart with vascular and cardiac connective tissue progenitors. However, their nature and evolutionary origin are poorly-known. We have suggested elsewhere (Pombal et al. Evol. Dev. 10: 210-216, 2008; Cano et al., J. Dev. Biol. 1: 3-19, 2013) that the proepicardium is an evolutionary derivative of the primordium of an ancient external pronephric glomerulus, devoid of its original excretory function. In this study, we describe for the first time expression of two podocyte markers in the chick proepicardium (glepp1 and synaptopodin) and we have shown how these podocyte markers as well as the intermediate mesoderm marker Pax2 are strongly upregulated when the proepicardium is cultured with nephrogenic inducers. Retinoic acid treatment also induced in the proepicardium expression of Hoxb4, a gene which confers to intermediate mesoderm competence to respond to nephrogenic signals. Thus, a latent nephrogenic potential persists in the proepicardium and also that its original glomerular fate can be partially rescued. The transcription factor Wt1, essential for kidney and epicardial development, plays opposite roles in both tissues, inducing epithelial-mesenchymal transition in the proepicardium and promoting epithelialization in the kidneys (Essafi et al., Dev. Cell 21: 559-574, 2011). Consistently with this antithetical function of Wt1, we have observed an upregulation of podocalyxin in the epicardium of mouse embryos with conditional deletion of the Wt1 gene, while this protein is transcriptionally activated by Wt1 in podocytes.


Asunto(s)
Proteínas Aviares/genética , Evolución Biológica , Pollos/genética , Regulación de la Expresión Génica , Pericardio/embriología , Pronefro/embriología , Animales , Proteínas Aviares/metabolismo , Biomarcadores/metabolismo , Embrión de Pollo/embriología , Pericardio/metabolismo , Pronefro/metabolismo
13.
Cell Cycle ; 14(9): 1365-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25789413

RESUMEN

Mitochondria morphology constantly changes through fission and fusion processes that regulate mitochondrial function, and it therefore plays a prominent role in cellular homeostasis. Cell death progression is associated with mitochondrial fission. Fission is mediated by the mainly cytoplasmic Drp1, which is activated by different post-translational modifications and recruited to mitochondria to perform its function. Our research and other studies have shown that in the early moments of excitotoxic insult Drp1 must be nitrosylated to mediate mitochondrial fragmentation in neurons. Nonetheless, mitochondrial fission is a multistep process in which filamentous actin assembly/disassembly and myosin-mediated mitochondrial constriction play prominent roles. Here we establish that in addition to nitric oxide production, excitotoxicity-induced mitochondrial fragmentation also requires activation of the actomyosin regulator ROCK. Although ROCK1 has been shown to phosphorylate and activate Drp1, experiments using phosphor-mutant forms of Drp1 in primary cortical neurons indicate that in excitotoxic conditions, ROCK does not act directly on Drp1 to mediate fission, but may act on the actomyosin complex. Thus, these data indicate that a wider range of signaling pathways than those that target Drp1 are amenable to be inhibited to prevent mitochondrial fragmentation as therapeutic option.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/toxicidad , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , N-Metilaspartato/toxicidad , Neuronas/efectos de los fármacos , Quinasas Asociadas a rho/metabolismo , Actomiosina/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/enzimología , Corteza Cerebral/patología , Dinaminas/genética , Dinaminas/metabolismo , Activación Enzimática , Mitocondrias/enzimología , Mitocondrias/patología , Neuronas/enzimología , Neuronas/patología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transfección , Quinasas Asociadas a rho/antagonistas & inhibidores
14.
Nat Cell Biol ; 16(4): 367-75, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24609269

RESUMEN

Fuelled by the obesity epidemic, there is considerable interest in the developmental origins of white adipose tissue (WAT) and the stem and progenitor cells from which it arises. Whereas increased visceral fat mass is associated with metabolic dysfunction, increased subcutaneous WAT is protective. There are six visceral fat depots: perirenal, gonadal, epicardial, retroperitoneal, omental and mesenteric, and it is a subject of much debate whether these have a common developmental origin and whether this differs from that for subcutaneous WAT. Here we show that all six visceral WAT depots receive a significant contribution from cells expressing Wt1 late in gestation. Conversely, no subcutaneous WAT or brown adipose tissue arises from Wt1-expressing cells. Postnatally, a subset of visceral WAT continues to arise from Wt1-expressing cells, consistent with the finding that Wt1 marks a proportion of cell populations enriched in WAT progenitors. We show that all visceral fat depots have a mesothelial layer like the visceral organs with which they are associated, and provide several lines of evidence that Wt1-expressing mesothelium can produce adipocytes. These results reveal a major ontogenetic difference between visceral and subcutaneous WAT, and pinpoint the lateral plate mesoderm as a major source of visceral WAT. They also support the notion that visceral WAT progenitors are heterogeneous, and suggest that mesothelium is a source of adipocytes.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Proteínas WT1/metabolismo , Adipocitos/citología , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/embriología , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/embriología , Animales , Antineoplásicos Hormonales/farmacología , Linaje de la Célula/genética , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Tamoxifeno/farmacología , Proteínas WT1/genética
15.
Hum Mol Genet ; 22(25): 5083-95, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23900076

RESUMEN

The embryonic epicardium is an important source of cardiovascular precursor cells and paracrine factors that are required for adequate heart formation. Signaling pathways regulated by WT1 that promote heart development have started to be described; however, there is little information on signaling pathways regulated by WT1 that could act in a negative manner. Transcriptome analysis of Wt1KO epicardial cells reveals an unexpected role for WT1 in repressing the expression of interferon-regulated genes that could be involved in a negative regulation of heart morphogenesis. Here, we showed that WT1 is required to repress the expression of the chemokines Ccl5 and Cxcl10 in epicardial cells. We observed an inverse correlation of Wt1 and the expression of Cxcl10 and Ccl5 during epicardium development. Chemokine receptor analyses of hearts from Wt1(gfp/+) mice demonstrate the differential expression of their chemokine receptors in GFP(+) epicardial enriched cells and GFP(-) cells. Functional assays demonstrate that CXCL10 and CCL5 inhibit epicardial cells migration and the proliferation of cardiomyocytes respectively. WT1 regulates the expression levels of Cxcl10 and Ccl5 in epicardial cells directly and indirectly through increasing the levels of IRF7. As epicardial cell reactivation after a myocardial damage is linked with WT1 expression, the present work has potential implications in adult heart repair.


Asunto(s)
Quimiocina CCL5/biosíntesis , Quimiocina CXCL10/biosíntesis , Corazón/crecimiento & desarrollo , Pericardio/crecimiento & desarrollo , Proteínas WT1/genética , Animales , Quimiocina CCL5/genética , Quimiocina CXCL10/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Factor 7 Regulador del Interferón/metabolismo , Ratones , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Pericardio/citología , Receptores de Quimiocina/antagonistas & inhibidores , Receptores de Quimiocina/metabolismo , Transducción de Señal , Proteínas WT1/biosíntesis
16.
Dev Cell ; 21(3): 559-74, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21871842

RESUMEN

Wt1 regulates the epithelial-mesenchymal transition (EMT) in the epicardium and the reverse process (MET) in kidney mesenchyme. The mechanisms underlying these reciprocal functions are unknown. Here, we show in both embryos and cultured cells that Wt1 regulates Wnt4 expression dichotomously. In kidney cells, Wt1 recruits Cbp and p300 as coactivators; in epicardial cells it enlists Basp1 as a corepressor. Surprisingly, in both tissues, Wt1 loss reciprocally switches the chromatin architecture of the entire Ctcf-bounded Wnt4 locus, but not the flanking regions; we term this mode of action "chromatin flip-flop." Ctcf and cohesin are dispensable for Wt1-mediated chromatin flip-flop but essential for maintaining the insulating boundaries. This work demonstrates that a developmental regulator coordinates chromatin boundaries with the transcriptional competence of the flanked region. These findings also have implications for hierarchical transcriptional regulation in development and disease.

17.
Development ; 138(6): 1093-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21343363

RESUMEN

Epicardial-derived signals are key regulators of cardiac embryonic development. An important part of these signals is known to relate to a retinoic acid (RA) receptor-dependent mechanism. RA is a potent morphogen synthesised by Raldh enzymes, Raldh2 being the predominant one in mesodermal tissues. Despite the importance of epicardial retinoid signalling in the heart, the molecular mechanisms controlling cardiac Raldh2 transcription remain unknown. In the current study, we show that Wt1-null epicardial cells display decreased expression of Raldh2 both in vivo and in vitro. Using a RA-responsive reporter, we have confirmed that Wt1-null epicardial cells actually show reduced synthesis of RA. We also demonstrate that Raldh2 is a direct transcriptional target of Wt1 in epicardial cells. A secondary objective of this study was to identify the status of RA-related receptors previously reported to be critical to epicardial biology (PDGFRα,ß; RXRα). PDGFRα and PDGFRß mRNA and protein levels are downregulated in the absence of Wt1, but only Pdgfra expression is rescued by the addition of RA to Wt1-null epicardial cells. RXRα mRNA levels are not affected in Wt1-null epicardial cells. Taken together, our results indicate that Wt1 critically regulates epicardial RA signalling via direct activation of the Raldh2 gene, and identify a role for Wt1 in the regulation of morphogen receptors involved in the proliferation, migration, and differentiation of epicardial and epicardially-derived cells (EPDC).


Asunto(s)
Aldehído Oxidorreductasas/genética , Pericardio/embriología , Tretinoina/metabolismo , Proteínas WT1/fisiología , Aldehído Oxidorreductasas/metabolismo , Animales , Diferenciación Celular/genética , Células Cultivadas , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Corazón/embriología , Ratones , Ratones Transgénicos , Pericardio/metabolismo , Transducción de Señal/genética , Activación Transcripcional/efectos de los fármacos , Tretinoina/farmacología , Tretinoina/fisiología
18.
Nat Genet ; 42(1): 89-93, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20023660

RESUMEN

The epicardial epithelial-mesenchymal transition (EMT) is hypothesized to generate cardiovascular progenitor cells that differentiate into various cell types, including coronary smooth muscle and endothelial cells, perivascular and cardiac interstitial fibroblasts and cardiomyocytes. Here we show that an epicardial-specific knockout of the gene encoding Wilms' tumor-1 (Wt1) leads to a reduction in mesenchymal progenitor cells and their derivatives. We show that Wt1 is essential for repression of the epithelial phenotype in epicardial cells and during embryonic stem cell differentiation through direct transcriptional regulation of the genes encoding Snail (Snai1) and E-cadherin (Cdh1), two of the major mediators of EMT. Some mesodermal lineages do not form in Wt1-null embryoid bodies, but this effect is rescued by the expression of Snai1, underscoring the importance of EMT in generating these differentiated cells. These new insights into the molecular mechanisms regulating cardiovascular progenitor cells and EMT will shed light on the pathogenesis of heart diseases and may help the development of cell-based therapies.


Asunto(s)
Cadherinas/genética , Células Madre/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Proteínas WT1/genética , Animales , Cadherinas/metabolismo , Sistema Cardiovascular/citología , Diferenciación Celular , Células Cultivadas , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epitelio/metabolismo , Epitelio/patología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Mesodermo/metabolismo , Mesodermo/patología , Ratones , Ratones Noqueados , Pericardio/anomalías , Pericardio/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción de la Familia Snail , Células Madre/citología , Factores de Transcripción/metabolismo , Proteínas WT1/metabolismo
19.
Blood Press ; 17(5-6): 298-305, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19085535

RESUMEN

BACKGROUND: Hypertension has been related to endothelial dysfunction. Patients with refractory hypertension (RH) have a reduced number of endothelial progenitor cells (EPCs). AIM: To evaluate if blood EPC levels relate to endothelium-dependent vasodilation (ED-VD) in RH. METHODS: We analyzed 29 RH confirmed by 24-h ambulatory blood pressure monitoring and assessed complete clinical and laboratory evaluation. EPCs were isolated from peripheral mononuclear cells (MNC) by flow cytometry. ED-VD was determined measuring flow-mediated dilation (FMD) by venous occlusion plethysmography. Results. Circulating EPCs/10(5) MNC (median [Q1-Q3]): 23.0 [4.5-53.8]. FMD (median [Q1-Q3]): 211.7 [79.5-365.8]%. Significant correlations with log-FMD: EPCs (r = 0.469; p = 0.018) and homocysteine (r = -0.414; p = 0.045). There was no collinearity between EPCs and homocysteine. FMD did not correlate with age, gender, office BP, 24-h systolic blood pressure or 24-h diastolic blood pressure, laboratory parameters, C-reactive-protein, left ventricular-mass index, dyslipidaemia, smoking habit and statin or angiotensin system blockers treatment. Multiple linear regression analysis showed that after age-adjustment, EPC (p = 0.027) and homocysteine (p = 0.004) were the only variables that predicted FMD (R = 0.740). After dividing patients according to EPC number, patients in the lower tertile showed a significantly reduced FMD compared with those in the group of the two upper tertiles of EPC: log-FMD (mean+/-SD): 4.7+/-0.9 vs 5.6+/-0.8, respectively (p = 0.031). CONCLUSIONS: ED-VD independently correlates with circulating EPCs in RH. Homocysteine is also an independent predictor of lower FMD in such patients.


Asunto(s)
Dilatación Patológica/diagnóstico , Células Endoteliales/patología , Hipertensión/patología , Células Madre/patología , Adulto , Recuento de Células , Separación Celular , Dilatación Patológica/patología , Citometría de Flujo , Homocisteína/sangre , Humanos , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Análisis de Regresión , Vasodilatación
20.
Biochem J ; 394(Pt 2): 449-57, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16232121

RESUMEN

Claudin-1 is an integral membrane protein component of tight junctions. The Snail family of transcription factors are repressors that play a central role in the epithelial-mesenchymal transition, a process that occurs during cancer progression. Snail and Slug members are direct repressors of E-cadherin and act by binding to the specific E-boxes of its proximal promoter. In the present study, we demonstrate that overexpression of Slug or Snail causes a decrease in transepithelial electrical resistance. Overexpression of Slug and Snail in MDCK (Madin-Darby canine kidney) cells down-regulated Claudin-1 at protein and mRNA levels. In addition, Snail and Slug are able to effectively repress human Claudin-1-driven reporter gene constructs containing the wild-type promoter sequence, but not those with mutations in two proximal E-box elements. We also demonstrate by band-shift assay that Snail and Slug bind to the E-box motifs present in the human Claudin-1 promoter. Moreover, an inverse correlation in the levels of Claudin-1 and Slug transcripts were observed in breast cancer cell lines. E-box elements in the Claudin-1 promoter were found to play a critical negative regulatory role in breast cancer cell lines that expressed low levels of Claudin-1 transcript. Significantly, in invasive human breast tumours, high levels of Snail and Slug correlated with low levels of Claudin-1 expression. Taken together, these results support the hypothesis that Claudin-1 is a direct downstream target gene of Snail family factors in epithelial cells.


Asunto(s)
Regulación hacia Abajo , Células Epiteliales/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Línea Celular , Claudina-1 , Perros , Fibroblastos/metabolismo , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción de la Familia Snail
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA