Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732158

RESUMEN

Biological membranes are composed of a lipid bilayer with embedded proteins, including ion channels like the epithelial sodium channel (ENaC), which are critical for sodium homeostasis and implicated in arterial hypertension (HTN). Changes in the lipid composition of the plasma membrane can significantly impact cellular processes related to physiological functions. We hypothesized that the observed overexpression of ENaC in neutrophils from HTN patients might result from alterations in the structuring domains within the plasma membrane, disrupting the endocytic processes responsible for ENaC retrieval. This study assessed the structural lipid composition of neutrophil plasma membranes from HTN patients along with the expression patterns of key elements regulating ENaC at the plasma membrane. Our findings suggest alterations in microdomain structure and SGK1 kinase activity, which could prolong ENaC presence on the plasma membrane. Additionally, we propose that the proteasomal and lysosomal degradation pathways are insufficient to diminish ENaC presence at the plasma membrane in HTN. These results highlight the importance of understanding ENaC retrieval mechanisms and suggest that targeting these mechanisms could provide insights for developing drugs to prevent and treat HTN.


Asunto(s)
Membrana Celular , Endocitosis , Canales Epiteliales de Sodio , Hipertensión , Neutrófilos , Canales Epiteliales de Sodio/metabolismo , Humanos , Neutrófilos/metabolismo , Hipertensión/metabolismo , Hipertensión/patología , Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Masculino , Femenino , Proteínas Inmediatas-Precoces/metabolismo , Persona de Mediana Edad , Microdominios de Membrana/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38085291

RESUMEN

Therapeutic effect of non-steroidal anti-inflammatory drugs (NSAIDs) has been related with gastrointestinal injury. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (PUFA), can prevent gastric and small intestinal damage. Nonetheless, contribution of antioxidative action in the protective effect of DHA has not been evaluated before in the small intestine injury after indomethacin treatment. Pathogenesis of NSAID-induced small intestinal injury is multifactorial, and reactive oxidative species have been related to indomethacin's small intestinal damage. The present work aimed to evaluate antioxidative activity in the protective action of DHA in the indomethacin-induced small intestinal damage. Female Wistar rats were gavage with DHA (3 mg/kg) or omeprazole (3 mg/kg) for 10 days. Each rat received indomethacin (3 mg/kg, orally) daily to induce small intestinal damage. The total area of intestinal ulcers and histopathological analysis were performed. In DHA-treated rats, myeloperoxidase and superoxide dismutase activity, glutathione, malondialdehyde, leukotriene, and lipopolysaccharide (LPS) levels were measured. Furthermore, the relative abundance of selective bacteria was assessed. DHA administration (3 mg/kg, p.o.) caused a significant decrease in indomethacin-induced small intestinal injury in Wistar rats after 10 days of treatment. DHA's enteroprotection resulted from the prevention of an increase in myeloperoxidase activity, and lipoperoxidation, as well as an improvement in the antioxidant defenses, such as glutathione levels and superoxide dismutase activity in the small intestine. Furthermore, we showed that DHA's enteroprotective effect decreased significantly LPS levels in indomethacin-induced injury in small intestine. Our data suggest that DHA's enteroprotective might be attributed to the prevention of oxidative stress.

3.
Exp Cell Res ; 433(2): 113847, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37931771

RESUMEN

Hypertension is a multifactorial disease characterized by vascular and renal dysfunction, cardiovascular remodeling, inflammation, and fibrosis, all of which are associated with oxidative stress. We previously demonstrated cellular reactive oxygen species (ROS) imbalances may impact the structural and biochemical functions of blood cells and reported downregulation of ß-dystroglycan (ß-Dg) and overexpression of the epithelial sodium channel (ENaC) contribute to the pathophysiology of hypertension. In this study, we aimed to determine the expression of dystroglycans (Dg) and ENaC in platelet progenitors (megakaryocytes) and their surrounding niches. Thin sections of bone marrow from 5- and 28-week-old spontaneous hypertensive rats (SHR) were compared to age-matched normotensive rats (WKY). Cytometry and immunohistochemical assays demonstrated an oxidative environment in SHR bone marrow, characterized by high levels of myeloperoxidase and 3-nitrotyrosine and downregulation of peroxiredoxin II. In addition, transmission electron micrography and confocal microscopy revealed morphological changes in platelets and Mgks from SHR rats, including swollen mitochondria. Quantitative qRT-PCR assays confirmed downregulation of Dg mRNA and immunohistochemistry and western-blotting validated low expression of ß-Dg, mainly in the phosphorylated form, in Mgks from 28-week-old SHR rats. Moreover, we observed a progressive increase in ß-1 integrin expression in Mgks and extracellular matrix proteins in Mgk niches in SHR rats compared to WKY controls. These results indicate accumulation of ROS promotes oxidative stress within the bone marrow environment and detrimentally affects cellular homeostasis in hypertensive individuals.


Asunto(s)
Distroglicanos , Hipertensión , Ratas , Animales , Especies Reactivas de Oxígeno , Ratas Endogámicas SHR , Megacariocitos/metabolismo , Ratas Endogámicas WKY , Hipertensión/metabolismo
4.
Biosensors (Basel) ; 12(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36290943

RESUMEN

Arterial hypertension (HTN) is a global public health concern and an important risk factor for cardiovascular diseases and renal failure. We previously reported overexpression of ENaC on the plasma membrane of human platelets is a hallmark of HTN. In this double-blinded study of an open population (n = 167), we evaluated the sensitivity and specificity of a diagnostic assay based on gold nanoparticles (AuNPs) conjugated to an antibody against epithelial sodium channel (ENaC) expressed on platelets, which is detected using a fluorescent anti-ENaC secondary antibody and spectrofluorometry. Using the cutoff value for the AuNP-anti-ENaC assay, we confirmed the diagnosis for 62.1% of patients with clinical HTN and detected 59.7% of patients had previously undiagnosed HTN. Although some shortcomings in terms of accurately discriminating healthy individuals and patients with HTN still need to be resolved, we propose this AuNP-anti-ENaC assay could be used for initial screening and early diagnosis to critically improve opportune clinical management of HTN.


Asunto(s)
Hipertensión , Nanopartículas del Metal , Humanos , Canales Epiteliales de Sodio/metabolismo , Oro , Hipertensión/diagnóstico , Hipertensión/metabolismo , Biomarcadores
5.
J Hum Hypertens ; 36(7): 640-650, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34218268

RESUMEN

Hypertension (HTN) causes end-organ damage and is a major cause of morbidity and mortality globally. Recent studies suggested blood cells participate in the maintenance of HTN. Platelets-anucleated cell fragments derived from megakaryocytes-exert diverse functions, including their well-characterized role in the formation of hemostatic clots. However, platelets from patients with HTN exhibit altered membrane lipid and protein compositions that impact platelet function and lead to formation of aggregates and vascular obstructions. Here, for the first time, we have identified, by proteomic analyses, the most relevant 11 proteins that show the greatest difference in their expression in platelets derived from patients with HTN, in comparison with those from normotensive individuals. These proteins are involved in cytoskeletal organization and the coagulation cascade that contributes to platelet activation, release of granule contents, and aggregation, which culminate in thrombus formation. These results have important implications in our understanding of the molecular mechanisms associated with the development of HTN, and in consequence, the development of new strategies to counteract the cardiovascular disorders associated with constitutive activation of platelets in HTN.


Asunto(s)
Hipertensión , Trombosis , Plaquetas , Humanos , Hipertensión/metabolismo , Megacariocitos/metabolismo , Activación Plaquetaria , Proteómica , Trombosis/metabolismo
6.
Exp Cell Res ; 402(2): 112577, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33811902

RESUMEN

Cellular heterogeneity and diversity are recognized to contribute to the functions of neutrophils under homeostatic and pathological conditions. We previously suggested that the chronic inflammatory responses associated with hypertension (HTN) are related to the participation of different subpopulations of neutrophils. Two populations of neutrophils can be obtained by density gradient centrifugation: normal-density neutrophils (NDN) and low-density neutrophils (LDN). However, the lack of standardized functional protocols has limited phenotypic characterization and functional comparisons of LDN and NDN. Based on their capability to incorporate Na+, maturity and activation stage, we characterized NDN and LDN in blood samples from ten patients with HTN and ten healthy individuals (HI) using flow cytometry. We compared the levels of reactive oxygen species (ROS), generation of neutrophil extracellular traps (NETs) and levels of apoptosis in NDN and LDN. In general, the NDN and LDN subpopulations from patients with HTN exhibited higher levels of sodium influx and ROS, and lower levels of apoptosis than the corresponding NDN and LDN subsets from HI. Transmission electron microscopy revealed NDN and LDN from patients with HTN exhibited alterations to mitochondrial morphology and fewer cytoplasmic granules than the corresponding HI subpopulations. Our results indicate both the NDN and LDN subpopulations enhance the effects of inflammation that contribute to the pathophysiology of HTN. Further detailed studies are required to characterize the events during ontogeny of the myeloid lineage that result in the diverse phenotypic characteristics of each subpopulation of LDN and NDN.


Asunto(s)
Heterogeneidad Genética , Inflamación/sangre , Neutrófilos/ultraestructura , Hipertensión Arterial Pulmonar/sangre , Adulto , Apoptosis/genética , Trampas Extracelulares/genética , Citometría de Flujo , Humanos , Inflamación/patología , Masculino , Neutrófilos/metabolismo , Neutrófilos/patología , Hipertensión Arterial Pulmonar/patología , Especies Reactivas de Oxígeno/metabolismo
7.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32824881

RESUMEN

ß-dystroglycan (ß-DG) assembles with lamins A/C and B1 and emerin at the nuclear envelope (NE) to maintain proper nuclear architecture and function. To provide insight into the nuclear function of ß-DG, we characterized the interaction between ß-DG and emerin at the molecular level. Emerin is a major NE protein that regulates multiple nuclear processes and whose deficiency results in Emery-Dreifuss muscular dystrophy (EDMD). Using truncated variants of ß-DG and emerin, via a series of in vitro and in vivo binding experiments and a tailored computational analysis, we determined that the ß-DG-emerin interaction is mediated at least in part by their respective transmembrane domains (TM). Using surface plasmon resonance assays we showed that emerin binds to ß-DG with high affinity (KD in the nanomolar range). Remarkably, the analysis of cells in which DG was knocked out demonstrated that loss of ß-DG resulted in a decreased emerin stability and impairment of emerin-mediated processes. ß-DG and emerin are reciprocally required for their optimal targeting within the NE, as shown by immunofluorescence, western blotting and immunoprecipitation assays using emerin variants with mutations in the TM domain and B-lymphocytes of a patient with EDMD. In summary, we demonstrated that ß-DG plays a role as an emerin interacting partner modulating its stability and function.


Asunto(s)
Distroglicanos/metabolismo , Proteínas de la Membrana/metabolismo , Distrofia Muscular de Emery-Dreifuss/metabolismo , Proteínas Nucleares/metabolismo , Transporte Activo de Núcleo Celular , Animales , Linfocitos B/metabolismo , Sitios de Unión , Línea Celular , Células Cultivadas , Distroglicanos/química , Distroglicanos/genética , Células HeLa , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Distrofia Muscular de Emery-Dreifuss/genética , Mutación , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica
8.
Exp Cell Res ; 385(2): 111692, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31689412

RESUMEN

Arterial hypertension (HTN) can lead to serious organ damage. Several mechanisms have been implicated in the pathogenesis of HTN including constitutive activation of platelets, which increases the risk of aggregation and clot formation. We recently demonstrated the plasma membranes of platelets from patients with HTN exhibit modified structural and physicochemical properties; Raman and Fourier transform infrared by attenuated total reflectance (FTIR-ATR) spectroscopy also indicated lipid content and protein structure alterations. This study aimed to precisely quantify the constituents of the main structural phospholipids and cholesterol in the plasma membranes of platelets from patients with HTN and normotensive individuals. We also assessed the consequence of these alterations on platelet structure and function. Liquid chromatography coupled to triple quadrupole mass spectrometry revealed the plasma membranes of HTN platelets contained less cholesterol and phosphatidylcholine, more phosphatidylserine and phosphatidylethanolamine and had similar sphingosine contents. Atomic force microscopy revealed HTN platelets exhibited increased surface roughness and more pleats. Transmission electron microscopy revealed diminution of the internal membranous structures in HTN platelets. Our findings strongly suggest plasma membrane lipid content alterations-including cholesterol depletion-occur in HTN, and these alterations may induce morphological and physiological abnormalities that participate in the functional changes associated with hypertension.


Asunto(s)
Plaquetas/metabolismo , Membrana Celular/ultraestructura , Hipertensión/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Anciano , Plaquetas/ultraestructura , Membrana Celular/química , Membrana Celular/metabolismo , Células Cultivadas , Femenino , Humanos , Masculino , Fluidez de la Membrana , Persona de Mediana Edad
9.
Cell Death Dis ; 10(3): 196, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814495

RESUMEN

ß-dystroglycan (ß-DG) is a key component of multiprotein complexes in the plasma membrane and nuclear envelope. In addition, ß-DG undergoes two successive proteolytic cleavages that result in the liberation of its intracellular domain (ICD) into the cytosol and nucleus. However, stimuli-inducing ICD cleavage and the physiological relevance of this proteolytic fragment are largely unknown. In this study we show for the first time that ß-DG ICD is targeted to the nucleolus where it interacts with the nuclear proteins B23 and UBF (central factor of Pol I-mediated rRNA gene transcription) and binds to rDNA promoter regions. Interestingly DG silencing results in reduced B23 and UBF levels and aberrant nucleolar morphology. Furthermore, ß-DG ICD cleavage is induced by different nucleolar stressors, including oxidative stress, acidosis, and UV irradiation, which implies its participation in the response to nucleolar stress. Consistent with this idea, overexpression of ß-DG elicited mislocalization and decreased levels of UBF and suppression of rRNA expression, which in turn provoked altered ribosome profiling and decreased cell growth. Collectively our data reveal that ß-DG ICD acts as negative regulator of rDNA transcription by impeding the transcriptional activity of UBF, as a part of the protective mechanism activated in response to nucleolar stress.


Asunto(s)
Nucléolo Celular/metabolismo , Distroglicanos/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Ribosómico/biosíntesis , Animales , Proliferación Celular/genética , Citoplasma/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Distroglicanos/antagonistas & inhibidores , Distroglicanos/genética , Ratones , Mioblastos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Estrés Oxidativo , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Dominios Proteicos/genética , ARN Ribosómico/genética , Ribosomas/metabolismo , Transcripción Genética , Regulación hacia Arriba/genética
10.
Biochim Biophys Acta Biomembr ; 1861(2): 387-402, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423324

RESUMEN

Hypertension (HTN), i.e. abnormally high blood pressure, is a major risk factor for heart attack, stroke, and kidney failure. The Epithelial Sodium Channel (ENaC), one of the main transporters regulates blood pressure by tightly controlling the sodium reabsorption along the nephron. Recently, we have shown an α-ENaC overexpression in platelets from hypertensive patients compared to platelets from normotensive subjects, suggesting it makes a contribution to the activation state of platelets and the physiopathology of hypertension. However, the involvement of the α-ENaC localized in neutrophils to this disease remains unknown. Neutrophils are the first leukocytes to be recruited to an inflammatory site and are equipped with a strong ability to eliminate intra- or extracellular pathogens using reactive oxygen species or antibacterial proteins contained in their granules. Using the Western blotting (Wb), flow cytometry, and qRT-PCR approaches; we determined α-ENaC neutrophil overexpression at the protein and messenger RNA (mRNA) levels. By confocal and cytometry analysis, we determined the α-ENaC distribution and the heterogeneity of HTN neutrophils population, respectively. Immunoprecipitation and Wb assays demonstrated the presence of both α-ENaC and caveolin-1 phosphorylated forms, compared with neutrophils from healthy individuals. Although neutrophils from hypertensive subjects circulating in an activated state were exhibiting important oxidative stress and modifications registered by confocal, atomic force, and scanning electron microscope, they conserved their defense capabilities. The features described above for neutrophils from hypertensive patients could be attributed to α-ENaC overexpression, as its drug inhibition diminished their activation state modulating the actin cytoskeleton reorganization triggered during the activation process.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Hipertensión/metabolismo , Hipertensión/patología , Neutrófilos/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Amilorida/farmacología , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Fenómenos Biofísicos/efectos de los fármacos , Estudios de Casos y Controles , Caveolina 1/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Canales Epiteliales de Sodio/genética , Femenino , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Masculino , Persona de Mediana Edad , Activación Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA