Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Sci Adv ; 10(14): eadk3674, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569027

RESUMEN

The immune system substantially influences age-related cognitive decline and Alzheimer's disease (AD) progression, affected by genetic and environmental factors. In a Mayo Clinic Study of Aging cohort, we examined how risk factors like APOE genotype, age, and sex affect inflammatory molecules and AD biomarkers in cerebrospinal fluid (CSF). Among cognitively unimpaired individuals over 65 (N = 298), we measured 365 CSF inflammatory molecules, finding age, sex, and diabetes status predominantly influencing their levels. We observed age-related correlations with AD biomarkers such as total tau, phosphorylated tau-181, neurofilament light chain (NfL), and YKL40. APOE4 was associated with lower Aß42 and higher SNAP25 in CSF. We explored baseline variables predicting cognitive decline risk, finding age, CSF Aß42, NfL, and REG4 to be independently correlated. Subjects with older age, lower Aß42, higher NfL, and higher REG4 at baseline had increased cognitive impairment risk during follow-up. This suggests that assessing CSF inflammatory molecules and AD biomarkers could predict cognitive impairment risk in the elderly.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/líquido cefalorraquídeo , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/etiología , Proteínas tau , Biomarcadores , Péptidos beta-Amiloides , Fragmentos de Péptidos
2.
Acta Neuropathol Commun ; 12(1): 25, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336940

RESUMEN

Alzheimer's disease (AD), characterized by the deposition of amyloid-ß (Aß) in senile plaques and neurofibrillary tangles of phosphorylated tau (pTau), is increasingly recognized as a complex disease with multiple pathologies. AD sometimes pathologically overlaps with age-related tauopathies such as four repeat (4R)-tau predominant argyrophilic grain disease (AGD). While AGD is often detected with AD pathology, the contribution of APOE4 to AGD risk is not clear despite its robust effects on AD pathogenesis. Specifically, how APOE genotype influences Aß and tau pathology in co-occurring AGD and AD has not been fully understood. Using postmortem brain samples (N = 353) from a neuropathologically defined cohort comprising of cases with AD and/or AGD pathology built to best represent different APOE genotypes, we measured the amounts of major AD-related molecules, including Aß40, Aß42, apolipoprotein E (apoE), total tau (tTau), and pTau181, in the temporal cortex. The presence of tau lesions characteristic of AD (AD-tau) was correlated with cognitive decline based on Mini-Mental State Examination (MMSE) scores, while the presence of AGD tau lesions (AGD-tau) was not. Interestingly, while APOE4 increased the risk of AD-tau pathology, it did not increase the risk of AGD-tau pathology. Although APOE4 was significantly associated with higher levels of insoluble Aß40, Aß42, apoE, and pTau181, the APOE4 effect was no longer detected in the presence of AGD-tau. We also found that co-occurrence of AGD with AD was associated with lower insoluble Aß42 and pTau181 levels. Overall, our findings suggest that different patterns of Aß, tau, and apoE accumulation mediate the development of AD-tau and AGD-tau pathology, which is affected by APOE genotype.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteínas E , Tauopatías , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Amiloide , Péptidos beta-Amiloides , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Proteínas tau , Tauopatías/patología
3.
Ann Neurol ; 95(2): 299-313, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37897306

RESUMEN

OBJECTIVE: This study was undertaken to apply established and emerging cerebrospinal fluid (CSF) biomarkers to improve diagnostic accuracy in patients with rapidly progressive dementia (RPD). Overlap in clinical presentation and results of diagnostic tests confounds etiologic diagnosis in patients with RPD. Objective measures are needed to improve diagnostic accuracy and to recognize patients with potentially treatment-responsive causes of RPD. METHODS: Biomarkers of Alzheimer disease neuropathology (amyloid-ß 42/40 ratio, phosphorylated tau [p-tau181, p-tau231]), neuroaxonal/neuronal injury (neurofilament light chain [NfL], visinin-like protein-1 [VILIP-1], total tau), neuroinflammation (chitinase-3-like protein [YKL-40], soluble triggering receptor expressed on myeloid cells 2 [sTREM2], glial fibrillary acidic protein [GFAP], monocyte chemoattractant protein-1 [MCP-1]), and synaptic dysfunction (synaptosomal-associated protein 25kDa, neurogranin) were measured in CSF obtained at presentation from 78 prospectively accrued patients with RPD due to neurodegenerative, vascular, and autoimmune/inflammatory diseases; 35 age- and sex-matched patients with typically progressive neurodegenerative disease; and 72 cognitively normal controls. Biomarker levels were compared across etiologic diagnoses, by potential treatment responsiveness, and between patients with typical and rapidly progressive presentations of neurodegenerative disease. RESULTS: Alzheimer disease biomarkers were associated with neurodegenerative causes of RPD. High NfL, sTREM2, and YKL-40 and low VILIP-1 identified patients with autoimmune/inflammatory diseases. MCP-1 levels were highest in patients with vascular causes of RPD. A multivariate model including GFAP, MCP-1, p-tau181, and sTREM2 identified the 44 patients with treatment-responsive causes of RPD with 89% accuracy. Minimal differences were observed between typical and rapidly progressive presentations of neurodegenerative disease. INTERPRETATION: Selected CSF biomarkers at presentation were associated with etiologic diagnoses and treatment responsiveness in patients with heterogeneous causes of RPD. The ability of cross-sectional biomarkers to inform upon mechanisms that drive rapidly progressive neurodegenerative disease is less clear. ANN NEUROL 2024;95:299-313.


Asunto(s)
Enfermedad de Alzheimer , Demencia , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/líquido cefalorraquídeo , Proteína 1 Similar a Quitinasa-3 , Proteínas tau/líquido cefalorraquídeo , Estudios Transversales , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo
4.
Ann Neurol ; 95(2): 237-248, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37782554

RESUMEN

OBJECTIVE: To improve the timely recognition of patients with treatment-responsive causes of rapidly progressive dementia (RPD). METHODS: A total of 226 adult patients with suspected RPD were enrolled in a prospective observational study and followed for up to 2 years. Diseases associated with RPD were characterized as potentially treatment-responsive or non-responsive, referencing clinical literature. Disease progression was measured using Clinical Dementia Rating® Sum-of-Box scores. Clinical and paraclinical features associated with treatment responsiveness were assessed using multivariable logistic regression. Findings informed the development of a clinical criterion optimized to recognize patients with potentially treatment-responsive causes of RPD early in the diagnostic evaluation. RESULTS: A total of 155 patients met defined RPD criteria, of whom 86 patients (55.5%) had potentially treatment-responsive causes. The median (range) age-at-symptom onset in patients with RPD was 68.9 years (range 22.0-90.7 years), with a similar number of men and women. Seizures, tumor (disease-associated), magnetic resonance imaging suggestive of autoimmune encephalitis, mania, movement abnormalities, and pleocytosis (≥10 cells/mm3 ) in cerebrospinal fluid at presentation were independently associated with treatment-responsive causes of RPD after controlling for age and sex. Those features at presentation, as well as age-at-symptom onset <50 years (ie, STAM3 P), captured 82 of 86 (95.3%) cases of treatment-responsive RPD. The presence of ≥3 STAM3 P features had a positive predictive value of 100%. INTERPRETATION: Selected features at presentation reliably identified patients with potentially treatment-responsive causes of RPD. Adaptation of the STAM3 P screening score in clinical practice may minimize diagnostic delays and missed opportunities for treatment in patients with suspected RPD. ANN NEUROL 2024;95:237-248.


Asunto(s)
Demencia , Encefalitis , Adulto , Masculino , Humanos , Femenino , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Demencia/diagnóstico , Demencia/tratamiento farmacológico , Demencia/etiología , Encefalitis/complicaciones , Imagen por Resonancia Magnética , Pruebas de Estado Mental y Demencia , Progresión de la Enfermedad
5.
Mol Psychiatry ; 29(3): 809-819, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38135757

RESUMEN

ABCA7 loss-of-function variants are associated with increased risk of Alzheimer's disease (AD). Using ABCA7 knockout human iPSC models generated with CRISPR/Cas9, we investigated the impacts of ABCA7 deficiency on neuronal metabolism and function. Lipidomics revealed that mitochondria-related phospholipids, such as phosphatidylglycerol and cardiolipin were reduced in the ABCA7-deficient iPSC-derived cortical organoids. Consistently, ABCA7 deficiency-induced alterations of mitochondrial morphology accompanied by reduced ATP synthase activity and exacerbated oxidative damage in the organoids. Furthermore, ABCA7-deficient iPSC-derived neurons showed compromised mitochondrial respiration and excess ROS generation, as well as enlarged mitochondrial morphology compared to the isogenic controls. ABCA7 deficiency also decreased spontaneous synaptic firing and network formation in iPSC-derived neurons, in which the effects were rescued by supplementation with phosphatidylglycerol or NAD+ precursor, nicotinamide mononucleotide. Importantly, effects of ABCA7 deficiency on mitochondria morphology and synapses were recapitulated in synaptosomes isolated from the brain of neuron-specific Abca7 knockout mice. Together, our results provide evidence that ABCA7 loss-of-function contributes to AD risk by modulating mitochondria lipid metabolism.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Células Madre Pluripotentes Inducidas , Metabolismo de los Lípidos , Ratones Noqueados , Mitocondrias , Neuronas , Mitocondrias/metabolismo , Neuronas/metabolismo , Humanos , Animales , Metabolismo de los Lípidos/fisiología , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Encéfalo/metabolismo
6.
Nat Immunol ; 24(11): 1854-1866, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857825

RESUMEN

Microglial involvement in Alzheimer's disease (AD) pathology has emerged as a risk-determining pathogenic event. While apolipoprotein E (APOE) is known to modify AD risk, it remains unclear how microglial apoE impacts brain cognition and AD pathology. Here, using conditional mouse models expressing apoE isoforms in microglia and central nervous system-associated macrophages (CAMs), we demonstrate a cell-autonomous effect of apoE3-mediated microglial activation and function, which are negated by apoE4. Expression of apoE3 in microglia/CAMs improves cognitive function, increases microglia surrounding amyloid plaque and reduces amyloid pathology and associated toxicity, whereas apoE4 expression either compromises or has no effects on these outcomes by impairing lipid metabolism. Single-cell transcriptomic profiling reveals increased antigen presentation and interferon pathways upon apoE3 expression. In contrast, apoE4 expression downregulates complement and lysosomal pathways, and promotes stress-related responses. Moreover, in the presence of mouse endogenous apoE, microglial apoE4 exacerbates amyloid pathology. Finally, we observed a reduction in Lgals3-positive responsive microglia surrounding amyloid plaque and an increased accumulation of lipid droplets in APOE4 human brains and induced pluripotent stem cell-derived microglia. Our findings establish critical isoform-dependent effects of microglia/CAM-expressed apoE in brain function and the development of amyloid pathology, providing new insight into how apoE4 vastly increases AD risk.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Microglía/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Encéfalo , Homeostasis , Ratones Transgénicos
7.
Sci Adv ; 9(37): eadi3647, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713494

RESUMEN

Neuron-derived extracellular vesicles (NDEVs) are potential biomarkers of neurological diseases although their reliable molecular target is not well established. Here, we demonstrate that ATPase Na+/K+ transporting subunit alpha 3 (ATP1A3) is abundantly expressed in extracellular vesicles (EVs) isolated from induced human neuron, brain, cerebrospinal fluid, and plasma in comparison with the presumed NDEV markers NCAM1 and L1CAM by using super-resolution microscopy and biochemical assessments. Proteomic analysis of immunoprecipitated ATP1A3+ brain-derived EVs shows higher enrichment of synaptic markers and cargo proteins relevant to Alzheimer's disease (AD) compared to NCAM1+ or LICAM+ EVs. Single particle analysis shows the elevated amyloid-ß positivity in ATP1A3+ EVs from AD plasma, providing better diagnostic prediction of AD over other plasma biomarkers. Thus, ATP1A3 is a reliable target to isolate NDEV from biofluids for diagnostic research.


Asunto(s)
Enfermedad de Alzheimer , Vesículas Extracelulares , Humanos , Proteómica , Encéfalo , Moléculas de Adhesión de Célula Nerviosa , Neuronas , ATPasa Intercambiadora de Sodio-Potasio
8.
J Alzheimers Dis ; 95(2): 399-405, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545238

RESUMEN

The prevalence of Alzheimer's disease is greater in women, but the underlying mechanisms remain to be elucidated. We herein demonstrated that α-secretase ADAM10 was downregulated and ADAM10 inhibitor sFRP1 was upregulated in 5xFAD mice. While there were no sex effects on ADAM10 protein and sFRP1 mRNA levels, female 5xFAD and age-matched non-transgenic mice exhibited higher levels of sFRP1 protein than corresponding male mice. Importantly, female 5xFAD mice accumulated more Aß than males, and sFRP1 protein levels were positively associated with Aß42 levels in 5xFAD mice. Our study suggests that sFRP1 is associated with amyloid pathology in a sex-dependent manner.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Animales , Femenino , Masculino , Ratones , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Ratones Transgénicos , Regulación hacia Arriba
9.
Neurology ; 101(14): e1402-e1411, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37580163

RESUMEN

BACKGROUND AND OBJECTIVES: Recent advances in blood-based biomarkers offer the potential to revolutionize the diagnosis and management of Alzheimer disease (AD), but additional research in diverse populations is critical. We assessed the profiles of blood-based AD biomarkers and their relationships to cognition and common medical comorbidities in a biracial cohort. METHODS: Participants were evaluated through the Mayo Clinic Jacksonville Alzheimer Disease Research Center and matched on age, sex, and cognitive status. Plasma AD biomarkers (ß-amyloid peptide 1-42 [Aß42/40], plasma tau phosphorylated at position 181 [p-tau181], glial fibrillary acidic protein [GFAP], and neurofilament light) were measured using the Quanterix SiMoA HD-X analyzer. Cognition was assessed with the Mini-Mental State Examination. Wilcoxon rank sum tests were used to assess for differences in plasma biomarker levels by sex. Linear models tested for associations of self-reported race, chronic kidney disease (CKD), and vascular risk factors with plasma AD biomarker levels. Additional models assessed for interactions between race and plasma biomarkers in predicting cognition. RESULTS: The sample comprised African American (AA; N = 267) and non-Hispanic White (NHW; N = 268) participants, including 69% female participants and age range 43-100 (median 80.2) years. Education was higher in NHW participants (median 16 vs 12 years, p < 0.001) while APOE ε4 positivity was higher in AA participants (43% vs 34%; p = 0.04). We observed no differences in plasma AD biomarker levels between AA and NHW participants. These results were unchanged after stratifying by cognitive status (unimpaired vs impaired). Although the p-tau181-cognition association seemed stronger in NHW participants while the Aß42/40-cognition association seemed stronger in AA participants, these findings did not survive after excluding individuals with CKD. Female participants displayed higher GFAP (177.5 pg/mL vs 157.73 pg/mL; p = 0.002) and lower p-tau181 (2.62 pg/mL vs 3.28 pg/mL; p = 0.001) levels than male participants. Diabetes was inversely associated with GFAP levels (ß = -0.01; p < 0.001). DISCUSSION: In a biracial community-based sample of adults, we observed that sex differences, CKD, and vascular risk factors, but not self-reported race, contributed to variation in plasma AD biomarkers. Although some prior studies have reported primary effects of race/ethnicity, our results reinforce the need to account for broad-based medical and social determinants of health (including sex, systemic comorbidities, and other factors) in effectively and equitably deploying plasma AD biomarkers in the general population.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Adulto , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/epidemiología , Proteínas tau , Péptidos beta-Amiloides , Cognición , Biomarcadores , Disfunción Cognitiva/psicología
10.
Stem Cell Res Ther ; 14(1): 214, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37605285

RESUMEN

BACKGROUND: The apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease (AD); however, how it modulates brain homeostasis is not clear. The apoE protein is a major lipid carrier in the brain transporting lipids such as cholesterol among different brain cell types. METHODS: We generated three-dimensional (3-D) cerebral organoids from human parental iPSC lines and its isogenic APOE-deficient (APOE-/-) iPSC line. To elucidate the cell-type-specific effects of APOE deficiency in the cerebral organoids, we performed scRNA-seq in the parental and APOE-/- cerebral organoids at Day 90. RESULTS: We show that APOE deficiency in human iPSC-derived cerebral organoids impacts brain lipid homeostasis by modulating multiple cellular and molecular pathways. Molecular profiling through single-cell RNA sequencing revealed that APOE deficiency leads to changes in cellular composition of isogenic cerebral organoids likely by modulating the eukaryotic initiation factor 2 (EIF2) signaling pathway as these events were alleviated by the treatment of an integrated stress response inhibitor (ISRIB). APOE deletion also leads to activation of the Wnt/ß-catenin signaling pathway with concomitant decrease of secreted frizzled-related protein 1 (SFRP1) expression in glia cells. Importantly, the critical role of apoE in cell-type-specific lipid homeostasis was observed upon APOE deletion in cerebral organoids with a specific upregulation of cholesterol biosynthesis in excitatory neurons and excessive lipid accumulation in astrocytes. Relevant to human AD, APOE4 cerebral organoids show altered neurogenesis and cholesterol metabolism compared to those with APOE3. CONCLUSIONS: Our work demonstrates critical roles of apoE in brain homeostasis and offers critical insights into the APOE4-related pathogenic mechanisms.


Asunto(s)
Apolipoproteínas E , Cerebro , Células Madre Pluripotentes Inducidas , Humanos , Apolipoproteína E4 , Apolipoproteínas E/genética , Diferenciación Celular , Organoides , Cerebro/metabolismo
11.
Mol Neurodegener ; 18(1): 39, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340466

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a progressive and age-associated neurodegenerative disorder that affects women disproportionally. However, the underlying mechanisms are poorly characterized. Moreover, while the interplay between sex and ApoE genotype in AD has been investigated, multi-omics studies to understand this interaction are limited. Therefore, we applied systems biology approaches to investigate sex-specific molecular networks of AD. METHODS: We integrated large-scale human postmortem brain transcriptomic data of AD from two cohorts (MSBB and ROSMAP) via multiscale network analysis and identified key drivers with sexually dimorphic expression patterns and/or different responses to APOE genotypes between sexes. The expression patterns and functional relevance of the top sex-specific network driver of AD were further investigated using postmortem human brain samples and gene perturbation experiments in AD mouse models. RESULTS: Gene expression changes in AD versus control were identified for each sex. Gene co-expression networks were constructed for each sex to identify AD-associated co-expressed gene modules shared by males and females or specific to each sex. Key network regulators were further identified as potential drivers of sex differences in AD development. LRP10 was identified as a top driver of the sex differences in AD pathogenesis and manifestation. Changes of LRP10 expression at the mRNA and protein levels were further validated in human AD brain samples. Gene perturbation experiments in EFAD mouse models demonstrated that LRP10 differentially affected cognitive function and AD pathology in sex- and APOE genotype-specific manners. A comprehensive mapping of brain cells in LRP10 over-expressed (OE) female E4FAD mice suggested neurons and microglia as the most affected cell populations. The female-specific targets of LRP10 identified from the single cell RNA-sequencing (scRNA-seq) data of the LRP10 OE E4FAD mouse brains were significantly enriched in the LRP10-centered subnetworks in female AD subjects, validating LRP10 as a key network regulator of AD in females. Eight LRP10 binding partners were identified by the yeast two-hybrid system screening, and LRP10 over-expression reduced the association of LRP10 with one binding partner CD34. CONCLUSIONS: These findings provide insights into key mechanisms mediating sex differences in AD pathogenesis and will facilitate the development of sex- and APOE genotype-specific therapies for AD.


Asunto(s)
Enfermedad de Alzheimer , Femenino , Humanos , Ratones , Masculino , Animales , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Transcriptoma , Redes Reguladoras de Genes , Apolipoproteínas E/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo
12.
STAR Protoc ; 4(2): 102271, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37289593

RESUMEN

The apolipoprotein E protein (apoE) confers differential risk for Alzheimer's disease depending on which isoforms are expressed. Here, we present a 2-day immunoprecipitation protocol using the HJ15.4 monoclonal apoE antibody for the pull-down of native apoE particles. We describe major steps for apoE production via immortalized astrocyte culture and HJ15.4 antibody bead coupling for apoE particle pull-down, elution, and characterization. This protocol could be used to isolate native apoE particles from multiple model systems or human biospecimens.

14.
Mol Neurodegener ; 18(1): 8, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36721205

RESUMEN

BACKGROUND: The rare p.H157Y variant of TREM2 (Triggering Receptor Expressed on Myeloid Cells 2) was found to increase Alzheimer's disease (AD) risk. This mutation is located at the cleavage site of TREM2 extracellular domain. Ectopic expression of TREM2-H157Y in HEK293 cells resulted in increased TREM2 shedding. However, the physiological outcomes of the TREM2 H157Y mutation remain unknown in the absence and presence of AD related pathologies. METHODS: We generated a novel Trem2 H157Y knock-in mouse model through CRISPR/Cas9 technology and investigated the effects of Trem2 H157Y on TREM2 proteolytic processing, synaptic function, and AD-related amyloid pathologies by conducting biochemical assays, targeted mass spectrometry analysis of TREM2, hippocampal electrophysiology, immunofluorescent staining, in vivo micro-dialysis, and cortical bulk RNA sequencing. RESULTS: Consistent with previous in vitro findings, Trem2 H157Y increases TREM2 shedding with elevated soluble TREM2 levels in the brain and serum. Moreover, Trem2 H157Y enhances synaptic plasticity without affecting microglial density and morphology, or TREM2 signaling. In the presence of amyloid pathology, Trem2 H157Y accelerates amyloid-ß (Aß) clearance and reduces amyloid burden, dystrophic neurites, and gliosis in two independent founder lines. Targeted mass spectrometry analysis of TREM2 revealed higher ratios of soluble to full-length TREM2-H157Y compared to wild-type TREM2, indicating that the H157Y mutation promotes TREM2 shedding in the presence of Aß. TREM2 signaling was further found reduced in Trem2 H157Y homozygous mice. Transcriptomic profiling revealed that Trem2 H157Y downregulates neuroinflammation-related genes and an immune module correlated with the amyloid pathology. CONCLUSION: Taken together, our findings suggest beneficial effects of the Trem2 H157Y mutation in synaptic function and in mitigating amyloid pathology. Considering the genetic association of TREM2 p.H157Y with AD risk, we speculate TREM2 H157Y in humans might increase AD risk through an amyloid-independent pathway, such as its effects on tauopathy and neurodegeneration which merit further investigation.


Asunto(s)
Péptidos beta-Amiloides , Proteínas Amiloidogénicas , Humanos , Animales , Ratones , Células HEK293 , Encéfalo , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética
15.
Mol Neurodegener ; 18(1): 2, 2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36609403

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is neuropathologically characterized by amyloid-beta (Aß) plaques and neurofibrillary tangles. The main protein components of these hallmarks include Aß40, Aß42, tau, phosphor-tau, and APOE. We hypothesize that genetic variants influence the levels and solubility of these AD-related proteins in the brain; identifying these may provide key insights into disease pathogenesis. METHODS: Genome-wide genotypes were collected from 441 AD cases, imputed to the haplotype reference consortium (HRC) panel, and filtered for quality and frequency. Temporal cortex levels of five AD-related proteins from three fractions, buffer-soluble (TBS), detergent-soluble (Triton-X = TX), and insoluble (Formic acid = FA), were available for these same individuals. Variants were tested for association with each quantitative biochemical measure using linear regression, and GSA-SNP2 was used to identify enriched Gene Ontology (GO) terms. Implicated variants and genes were further assessed for association with other relevant variables. RESULTS: We identified genome-wide significant associations at seven novel loci and the APOE locus. Genes and variants at these loci also associate with multiple AD-related measures, regulate gene expression, have cell-type specific enrichment, and roles in brain health and other neuropsychiatric diseases. Pathway analysis identified significant enrichment of shared and distinct biological pathways. CONCLUSIONS: Although all biochemical measures tested reflect proteins core to AD pathology, our results strongly suggest that each have unique genetic architecture and biological pathways that influence their specific biochemical states in the brain. Our novel approach of deep brain biochemical endophenotype GWAS has implications for pathophysiology of proteostasis in AD that can guide therapeutic discovery efforts focused on these proteins.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Estudio de Asociación del Genoma Completo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Placa Amiloide/patología , Fenotipo , Apolipoproteínas E/metabolismo , Proteínas tau/metabolismo
16.
Mol Neurodegener ; 17(1): 75, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36419137

RESUMEN

BACKGROUND: Abnormal lipid accumulation has been recognized as a key element of immune dysregulation in microglia whose dysfunction contributes to neurodegenerative diseases. Microglia play essential roles in the clearance of lipid-rich cellular debris upon myelin damage or demyelination, a common pathogenic event in neuronal disorders. Apolipoprotein E (apoE) plays a pivotal role in brain lipid homeostasis; however, the apoE isoform-dependent mechanisms regulating microglial response upon demyelination remain unclear. METHODS: To determine how apoE isoforms impact microglial response to myelin damage, 2-month-old apoE2-, apoE3-, and apoE4-targeted replacement (TR) mice were fed with normal diet (CTL) or 0.2% cuprizone (CPZ) diet for four weeks to induce demyelination in the brain. To examine the effects on subsequent remyelination, the cuprizone diet was switched back to regular chow for an additional two weeks. After treatment, brains were collected and subjected to immunohistochemical and biochemical analyses to assess the myelination status, microglial responses, and their capacity for myelin debris clearance. Bulk RNA sequencing was performed on the corpus callosum (CC) to address the molecular mechanisms underpinning apoE-mediated microglial activation upon demyelination. RESULTS: We demonstrate dramatic isoform-dependent differences in the activation and function of microglia upon cuprizone-induced demyelination. ApoE2 microglia were hyperactive and more efficient in clearing lipid-rich myelin debris, whereas apoE4 microglia displayed a less activated phenotype with reduced clearance efficiency, compared with apoE3 microglia. Transcriptomic profiling revealed that key molecules known to modulate microglial functions had differential expression patterns in an apoE isoform-dependent manner. Importantly, apoE4 microglia had excessive buildup of lipid droplets, consistent with an impairment in lipid metabolism, whereas apoE2 microglia displayed a superior ability to metabolize myelin enriched lipids. Further, apoE2-TR mice had a greater extent of remyelination; whereas remyelination was compromised in apoE4-TR mice. CONCLUSIONS: Our findings provide critical mechanistic insights into how apoE isoforms differentially regulate microglial function and the maintenance of myelin dynamics, which may inform novel therapeutic avenues for targeting microglial dysfunctions in neurodegenerative diseases.


Asunto(s)
Apolipoproteína E4 , Enfermedades Desmielinizantes , Animales , Ratones , Apolipoproteína E2 , Apolipoproteína E4/genética , Microglía , Apolipoproteína E3 , Metabolismo de los Lípidos , Cuprizona/toxicidad , Apolipoproteínas E
17.
J Exp Med ; 219(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36107206

RESUMEN

TREM2 is exclusively expressed by microglia in the brain and is strongly linked to the risk for Alzheimer's disease (AD). As microglial responses modulated by TREM2 are central to AD pathogenesis, enhancing TREM2 signaling has been explored as an AD therapeutic strategy. However, the effective therapeutic window targeting TREM2 is unclear. Here, by using microglia-specific inducible mouse models overexpressing human wild-type TREM2 (TREM2-WT) or R47H risk variant (TREM2-R47H), we show that TREM2-WT expression reduces amyloid deposition and neuritic dystrophy only during the early amyloid seeding stage, whereas TREM2-R47H exacerbates amyloid burden during the middle amyloid rapid growth stage. Single-cell RNA sequencing reveals suppressed disease-associated microglia (DAM) signature and reduced DAM population upon TREM2-WT expression in the early stage, whereas upregulated antigen presentation pathway is detected with TREM2-R47H expression in the middle stage. Together, our findings highlight the dynamic effects of TREM2 in modulating AD pathogenesis and emphasize the beneficial effect of enhancing TREM2 function in the early stage of AD development.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Amiloidosis/patología , Animales , Encéfalo/patología , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Microglía/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
18.
Mol Neurodegener ; 17(1): 57, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056345

RESUMEN

BACKGROUND: The aggregation and spread of α-synuclein (α-Syn) protein and related neuronal toxicity are the key pathological features of Parkinson's disease (PD) and Lewy body dementia (LBD). Studies have shown that pathological species of α-Syn and tau can spread in a prion-like manner between neurons, although these two proteins have distinct pathological roles and contribute to different neurodegenerative diseases. It is reported that the low-density lipoprotein receptor-related protein 1 (LRP1) regulates the spread of tau proteins; however, the molecular regulatory mechanisms of α-Syn uptake and spread, and whether it is also regulated by LRP1, remain poorly understood. METHODS: We established LRP1 knockout (LRP1-KO) human induced pluripotent stem cells (iPSCs) isogenic lines using a CRISPR/Cas9 strategy and generated iPSC-derived neurons (iPSNs) to test the role of LRP1 in α-Syn uptake. We treated the iPSNs with fluorescently labeled α-Syn protein and measured the internalization of α-Syn using flow cytometry. Three forms of α-Syn species were tested: monomers, oligomers, and pre-formed fibrils (PFFs). To examine whether the lysine residues of α-Syn are involved in LRP1-mediated uptake, we capped the amines of lysines on α-Syn with sulfo-NHS acetate and then measured the internalization. We also tested whether the N-terminus of α-Syn is critical for LRP1-mediated internalization. Lastly, we investigated the role of Lrp1 in regulating α-Syn spread with a neuronal Lrp1 conditional knockout (Lrp1-nKO) mouse model. We generated adeno-associated viruses (AAVs) that allowed for distinguishing the α-Syn expression versus spread and injected them into the hippocampus of six-month-old Lrp1-nKO mice and the littermate wild type (WT) controls. The spread of α-Syn was evaluated three months after the injection. RESULTS: We found that the uptake of both monomeric and oligomeric α-Syn was significantly reduced in iPSNs with LRP1-KO compared with the WT controls. The uptake of α-Syn PFFs was also inhibited in LRP1-KO iPSNs, albeit to a much lesser extent compared to α-Syn monomers and oligomers. The blocking of lysine residues on α-Syn effectively decreased the uptake of α-Syn in iPSNs and the N-terminus of α-Syn was critical for LRP1-mediated α-Syn uptake. Finally, in the Lrp1-nKO mice, the spread of α-Syn was significantly reduced compared with the WT littermates. CONCLUSIONS: We identified LRP1 as a key regulator of α-Syn neuronal uptake, as well as an important mediator of α-Syn spread in the brain. This study provides new knowledge on the physiological and pathological role of LRP1 in α-Syn trafficking and pathology, offering insight for the treatment of synucleinopathies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , alfa-Sinucleína/metabolismo , Animales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lactante , Ratones , Enfermedad de Parkinson/metabolismo , Sinapsinas , Proteínas tau/metabolismo
19.
Nat Neurosci ; 25(8): 1020-1033, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35915180

RESUMEN

The ε4 allele of the apolipoprotein E (APOE) gene, a genetic risk factor for Alzheimer's disease, is abundantly expressed in both the brain and periphery. Here, we present evidence that peripheral apoE isoforms, separated from those in the brain by the blood-brain barrier, differentially impact Alzheimer's disease pathogenesis and cognition. To evaluate the function of peripheral apoE, we developed conditional mouse models expressing human APOE3 or APOE4 in the liver with no detectable apoE in the brain. Liver-expressed apoE4 compromised synaptic plasticity and cognition by impairing cerebrovascular functions. Plasma proteome profiling revealed apoE isoform-dependent functional pathways highlighting cell adhesion, lipoprotein metabolism and complement activation. ApoE3 plasma from young mice improved cognition and reduced vessel-associated gliosis when transfused into aged mice, whereas apoE4 compromised the beneficial effects of young plasma. A human induced pluripotent stem cell-derived endothelial cell model recapitulated the plasma apoE isoform-specific effect on endothelial integrity, further supporting a vascular-related mechanism. Upon breeding with amyloid model mice, liver-expressed apoE4 exacerbated brain amyloid pathology, whereas apoE3 reduced it. Our findings demonstrate pathogenic effects of peripheral apoE4, providing a strong rationale for targeting peripheral apoE to treat Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/metabolismo , Animales , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Encéfalo/metabolismo , Cognición , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Transgénicos , Isoformas de Proteínas/metabolismo
20.
Acta Neuropathol ; 143(6): 641-662, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35471463

RESUMEN

Approximately half of Alzheimer's disease (AD) brains have concomitant Lewy pathology at autopsy, suggesting that α-synuclein (α-SYN) aggregation is a regulated event in the pathogenesis of AD. Genome-wide association studies revealed that the ε4 allele of the apolipoprotein E (APOE4) gene, the strongest genetic risk factor for AD, is also the most replicated genetic risk factor for Lewy body dementia (LBD), signifying an important role of APOE4 in both amyloid-ß (Aß) and α-SYN pathogenesis. How APOE4 modulates α-SYN aggregation in AD is unclear. In this study, we aimed to determine how α-SYN is associated with AD-related pathology and how APOE4 impacts α-SYN seeding and toxicity. We measured α-SYN levels and their association with other established AD-related markers in brain samples from autopsy-confirmed AD patients (N = 469), where 54% had concomitant LB pathology (AD + LB). We found significant correlations between the levels of α-SYN and those of Aß40, Aß42, tau and APOE, particularly in insoluble fractions of AD + LB. Using a real-time quaking-induced conversion (RT-QuIC) assay, we measured the seeding activity of soluble α-SYN and found that α-SYN seeding was exacerbated by APOE4 in the AD cohort, as well as a small cohort of autopsy-confirmed LBD brains with minimal Alzheimer type pathology. We further fractionated the soluble AD brain lysates by size exclusion chromatography (SEC) ran on fast protein liquid chromatography (FPLC) and identified the α-SYN species (~ 96 kDa) that showed the strongest seeding activity. Finally, using human induced pluripotent stem cell (iPSC)-derived neurons, we showed that amplified α-SYN aggregates from AD + LB brain of patients with APOE4 were highly toxic to neurons, whereas the same amount of α-SYN monomer was not toxic. Our findings suggest that the presence of LB pathology correlates with AD-related pathologies and that APOE4 exacerbates α-SYN seeding activity and neurotoxicity, providing mechanistic insight into how APOE4 affects α-SYN pathogenesis in AD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Células Madre Pluripotentes Inducidas , Enfermedad por Cuerpos de Lewy , Síndromes de Neurotoxicidad , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteínas E , Estudio de Asociación del Genoma Completo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/patología , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA