Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Anal Chem ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028894

RESUMEN

Open mass spectral libraries (OMSLs) are critical for metabolite annotation and machine learning, especially given the rising volume of untargeted metabolomic studies and the development of annotation pipelines. Despite their importance, the practical application of OMSLs is hampered by the lack of standardized file formats, metadata fields, and supporting ontology. Current libraries, often restricted to specific topics or matrices, such as natural products, lipids, or the human metabolome, may limit the discovery potential of untargeted studies. The goal of FragHub is to provide users with the capability to integrate various OMSLs into a single unified format, thereby enhancing the annotation accuracy and reliability. FragHub addresses these challenges by integrating multiple OMSLs into a single comprehensive database, supporting various data formats, and harmonizing metadata. It also proposes some generic filters for the mass spectrum using a graphical user interface. Additionally, a workflow to generate in-house libraries compatible with FragHub is proposed. FragHub dynamically segregates libraries based on ionization modes and chromatography techniques, thereby enhancing data utility in metabolomic research. The FragHub Python code is publicly available under a MIT license, at the following repository: https://github.com/eMetaboHUB/FragHub. Generated data can be accessed at 10.5281/zenodo.11057687.

2.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38896026

RESUMEN

The rhizosphere, which serves as the primary interface between plant roots and the soil, constitutes an ecological niche for a huge diversity of microbial communities. Currently, there is little knowledge on the nature and the function of the different metabolites released by rhizospheric microbes to facilitate colonization of this highly competitive environment. Here, we demonstrate how the production of galbonolides, a group of polyene macrolides that inhibit plant and fungal inositol phosphorylceramide synthase (IPCS), empowers the rhizospheric Streptomyces strain AgN23, to thrive in the rhizosphere by triggering the plant's defence mechanisms. Metabolomic analysis of AgN23-inoculated Arabidopsis roots revealed a strong induction in the production of an indole alkaloid, camalexin, which is a major phytoalexin in Arabidopsis. By using a plant mutant compromised in camalexin synthesis, we show that camalexin production is necessary for the successful colonization of the rhizosphere by AgN23. Conversely, hindering galbonolides biosynthesis in AgN23 knock-out mutant resulted in loss of inhibition of IPCS, a deficiency in plant defence activation, notably the production of camalexin, and a strongly reduced development of the mutant bacteria in the rhizosphere. Together, our results identified galbonolides as important metabolites mediating rhizosphere colonization by Streptomyces.


Asunto(s)
Arabidopsis , Indoles , Inmunidad de la Planta , Raíces de Plantas , Rizosfera , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Arabidopsis/microbiología , Arabidopsis/genética , Raíces de Plantas/microbiología , Indoles/metabolismo , Macrólidos/metabolismo , Tiazoles/metabolismo , Microbiología del Suelo , Fitoalexinas
3.
Front Plant Sci ; 14: 1156733, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929182

RESUMEN

Pythium oligandrum is a soil-borne oomycete associated with rhizosphere and root tissues. Its ability to enhance plant growth, stimulate plant immunity and parasitize fungal and oomycete preys has led to the development of agricultural biocontrol products. Meanwhile, the effect of P. oligandrum on mutualistic interactions and more generally on root microbial communities has not been investigated. Here, we developed a biological system comprising P. oligandrum interacting with two legume plants, Medicago truncatula and Pisum sativum. P. oligandrum activity was investigated at the transcriptomics level through an RNAseq approach, metabolomics and finally metagenomics to investigate the impact of P. oligandrum on root microbiota. We found that P. oligandrum promotes plant growth in these two species and protects them against infection by the oomycete Aphanomyces euteiches, a devastating legume root pathogen. In addition, P. oligandrum up-regulated more than 1000 genes in M. truncatula roots including genes involved in plant defense and notably in the biosynthesis of antimicrobial compounds and validated the enhanced production of M. truncatula phytoalexins, medicarpin and formononetin. Despite this activation of plant immunity, we found that root colonization by P. oligandrum did not impaired symbiotic interactions, promoting the formation of large and multilobed symbiotic nodules with Ensifer meliloti and did not negatively affect the formation of arbuscular mycorrhizal symbiosis. Finally, metagenomic analyses showed the oomycete modifies the composition of fungal and bacterial communities. Together, our results provide novel insights regarding the involvement of P. oligandrum in the functioning of plant root microbiota.

4.
Front Pharmacol ; 14: 1100542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342590

RESUMEN

High prevalence of parasitic or bacterial infectious diseases in some world areas is due to multiple reasons, including a lack of an appropriate health policy, challenging logistics and poverty. The support to research and development of new medicines to fight infectious diseases is one of the sustainable development goals promoted by World Health Organization (WHO). In this sense, the traditional medicinal knowledge substantiated by ethnopharmacology is a valuable starting point for drug discovery. This work aims at the scientific validation of the traditional use of Piper species ("Cordoncillos") as firsthand anti-infectious medicines. For this purpose, we adapted a computational statistical model to correlate the LCMS chemical profiles of 54 extracts from 19 Piper species to their corresponding anti-infectious assay results based on 37 microbial or parasites strains. We mainly identified two groups of bioactive compounds (called features as they are considered at the analytical level and are not formally isolated). Group 1 is composed of 11 features being highly correlated to an inhibiting activity on 21 bacteria (principally Gram-positive strains), one fungus (C. albicans), and one parasite (Trypanosoma brucei gambiense). The group 2 is composed of 9 features having a clear selectivity on Leishmania (all strains, both axenic and intramacrophagic). Bioactive features in group 1 were identified principally in the extracts of Piper strigosum and P. xanthostachyum. In group 2, bioactive features were distributed in the extracts of 14 Piper species. This multiplexed approach provided a broad picture of the metabolome as well as a map of compounds putatively associated to bioactivity. To our knowledge, the implementation of this type of metabolomics tools aimed at identifying bioactive compounds has not been used so far.

5.
Environ Microbiol ; 25(2): 454-472, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36451580

RESUMEN

The symbioses between plants of the Rubiaceae and Primulaceae families with Burkholderia bacteria represent unique and intimate plant-bacterial relationships. Many of these interactions have been identified through PCR-dependent typing methods, but there is little information available about their functional and ecological roles. We assembled 17 new endophyte genomes representing endophytes from 13 plant species, including those of two previously unknown associations. Genomes of leaf endophytes belonging to Burkholderia s.l. show extensive signs of genome reduction, albeit to varying degrees. Except for one endophyte, none of the bacterial symbionts could be isolated on standard microbiological media. Despite their taxonomic diversity, all endophyte genomes contained gene clusters linked to the production of specialized metabolites, including genes linked to cyclitol sugar analog metabolism and in one instance non-ribosomal peptide synthesis. These genes and gene clusters are unique within Burkholderia s.l. and are likely horizontally acquired. We propose that the acquisition of secondary metabolite gene clusters through horizontal gene transfer is a prerequisite for the evolution of a stable association between these endophytes and their hosts.


Asunto(s)
Burkholderia , Ciclitoles , Humanos , Burkholderia/genética , Simbiosis/genética , Endófitos/genética , Plantas/microbiología , Hojas de la Planta/microbiología , Filogenia
6.
Food Chem ; 407: 135134, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36527946

RESUMEN

Pseudocereals are best known for three crops derived from the Andes: quinoa (Chenopodium quinoa), canihua (C. pallidicaule), and kiwicha (Amaranthus caudatus). Their grains are recognized for their nutritional benefits; however, there is a higher level of polyphenism. Meanwhile, the chemical food safety of pseudocereals remains poorly documented. Here, we applied untargeted and targeted metabolomics approaches by LC-MS to achieve both: i) a comprehensive chemical mapping of pseudocereal samples collected in the Andes; and ii) a quantification of their contents in emerging mycotoxins. An inventory of the fungal community was also realized to better know the fungi present in these grains. Metabotyping permitted to add new insights into the chemotaxonomy of pseudocereals, confirming the previously established phylotranscriptomic clades. Sixteen samples from Peru (out of 27) and one from France (out of one) were contaminated with Beauvericin, an emerging mycotoxin. Several mycotoxigenic fungi were detected, including Aspergillus sp., Penicillium sp., and Alternaria sp.


Asunto(s)
Chenopodium quinoa , Micotoxinas , Micotoxinas/análisis , Grano Comestible/química , Productos Agrícolas/química , Chenopodium quinoa/química , Alternaria , Contaminación de Alimentos/análisis
7.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499572

RESUMEN

Diazotrophic bacteria isolated from the rhizosphere of a wild wheat ancestor, grown from its refuge area in the Fertile Crescent, were found to be efficient Plant Growth-Promoting Rhizobacteria (PGPR), upon interaction with an elite wheat cultivar. In nitrogen-starved plants, they increased the amount of nitrogen in the seed crop (per plant) by about twofold. A bacterial growth medium was developed to investigate the effects of bacterial exudates on root development in the elite cultivar, and to analyze the exo-metabolomes and exo-proteomes. Altered root development was observed, with distinct responses depending on the strain, for instance, with respect to root hair development. A first conclusion from these results is that the ability of wheat to establish effective beneficial interactions with PGPRs does not appear to have undergone systematic deep reprogramming during domestication. Exo-metabolome analysis revealed a complex set of secondary metabolites, including nutrient ion chelators, cyclopeptides that could act as phytohormone mimetics, and quorum sensing molecules having inter-kingdom signaling properties. The exo-proteome-comprised strain-specific enzymes, and structural proteins belonging to outer-membrane vesicles, are likely to sequester metabolites in their lumen. Thus, the methodological processes we have developed to collect and analyze bacterial exudates have revealed that PGPRs constitutively exude a highly complex set of metabolites; this is likely to allow numerous mechanisms to simultaneously contribute to plant growth promotion, and thereby to also broaden the spectra of plant genotypes (species and accessions/cultivars) with which beneficial interactions can occur.


Asunto(s)
Microbiología del Suelo , Triticum , Triticum/metabolismo , Raíces de Plantas/metabolismo , Rizosfera , Bacterias , Desarrollo de la Planta , Plantas , Nitrógeno/metabolismo , Exudados de Plantas/metabolismo
8.
Food Chem ; 386: 132704, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35358858

RESUMEN

Many species of chili peppers have overlapping morphological characters and delimitation by visual descriptors in many cases fails to differentiate one species from another. In Peru, there are 413 accessions of native chili pepper and 296 accessions of rocotos conserved in the Germplasm Collections of the National Institute of Agrarian Innovation (INIA), of which five accessions (three species from three locations) were selected for the present metabolomic study. The Discrimination of the three species of native chili peppers and identification of biomarkers was performed using untargeted metabolomic approach based on profiling by UHPLC-HRMS and multivariate data analysis. The samples of fresh chili peppers (whole fruit) from Chincha area were used to construct an OPLS-DA model. To validate the biomarkers (identified 15 biomarkers, mainly flavonoids), an external validation set of the OPLS-DA model was constructed using Chiclayo and Huaral collection datasets. Consequently, the OPLS-DA based on Chincha samples model has a high predictive capacity demonstrating that the biomarkers have a high probability of continuity in any culture space, being successful in discriminating the species by untargeted metabolomics.


Asunto(s)
Capsicum , Biomarcadores , Frutas , Metabolómica , Perú , Verduras
9.
Front Microbiol ; 13: 835463, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308402

RESUMEN

Esca disease is one of the most destructive grapevine trunk diseases. Phaeoacremonium minimum and Phaeomoniella chlamydospora are two of the known fungal pathogens associated with this disease. Today, biocontrol agents against Esca are mainly based on the use of the strain of the mycoparasite fungal genus Trichoderma such as the Vintec® product. The aim of this study was to investigate early response of woody tissues to Esca pathogens and identify metabolites that could be correlated with a biocontrol activity within a complex woody matrix. An untargeted liquid chromatography-high-resolution mass spectrometry metabolomic approach coupled to a spectral similarity network was used to highlight clusters of compounds associated with the plant response to pathogens and biocontrol. Dereplication highlighted the possible role of glycerophospholipids and polyphenol compounds, the latest mainly belonging to stilbenoids. Antifungal activity of some relevant biomarkers, evaluated in vitro on Phaeomoniella chlamydospora and Botrytis cinerea, suggests that some of these compounds can play a role to limit the development of Esca pathogens in planta.

10.
Front Physiol ; 12: 763195, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899388

RESUMEN

Mosquito-borne flaviviruses, such as dengue (DENV), Zika (ZIKV), yellow fever (YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses, threaten a large part of the human populations. In absence of therapeutics and effective vaccines against each flaviviruses, targeting viral metabolic requirements in mosquitoes may hold the key to new intervention strategies. Development of metabolomics in the last decade opened a new field of research: mosquito metabolomics. It is now clear that flaviviruses rely on mosquito lipids, especially phospholipids, for their cellular cycle and propagation. Here, we review the biosyntheses of, biochemical properties of and flaviviral interactions with mosquito phospholipids. Phospholipids are structural lipids with a polar headgroup and apolar acyl chains, enabling the formation of lipid bilayer that form plasma- and endomembranes. Phospholipids are mostly synthesized through the de novo pathway and remodeling cycle. Variations in headgroup and acyl chains influence phospholipid physicochemical properties and consequently the membrane behavior. Flaviviruses interact with cellular membranes at every step of their cellular cycle. Recent evidence demonstrates that flaviviruses reconfigure the phospholipidome in mosquitoes by regulating phospholipid syntheses to increase virus multiplication. Identifying the phospholipids involved and understanding how flaviviruses regulate these in mosquitoes is required to design new interventions.

11.
Anal Chim Acta ; 1184: 339020, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34625242

RESUMEN

Cannabis sativa has a long history of domestication both for its bioactive compounds and its fibers. This has produced hundreds of varieties, usually characterized in the literature by chemotypes, with Δ9-THC and CBD content as the main markers. However, chemotyping could also be done based on minor compounds (phytocannabinoids and others). In this work, a workflow, which we propose to name cannabinomics, combines mass spectrometry of the whole metabolome and statistical analysis to help differentiate C. sativa varieties and deciphering their characteristic markers. By applying this cannabinomics approach to the data obtained from 20 varieties of C. sativa (classically classified as chemotype I, II, or III), we compared the results with those obtained by a targeted quantification of 11 phytocannabinoids. Cannabinomics can be considered as a complementary tool for phenotyping and genotyping, allowing the identification of minor compounds playing a key role as markers of differentiation.


Asunto(s)
Cannabinoides , Cannabis , Metaboloma
12.
J Ethnopharmacol ; 264: 113262, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32818574

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In the Peruvian Amazon as in the tropical countries of South America, the use of medicinal Piper species (cordoncillos) is common practice, particularly against symptoms of infection by protozoal parasites. However, there is few documented information about the practical aspects of their use and few scientific validation. The starting point of this work was a set of interviews of people living in six rural communities from the Peruvian Amazon (Alto Amazonas Province) about their uses of plants from Piper genus: one community of Amerindian native people (Shawi community) and five communities of mestizos. Infections caused by parasitic protozoa take a huge toll on public health in the Amazonian communities, who partly fight it using traditional remedies. Validation of these traditional practices contributes to public health care efficiency and may help to identify new antiprotozoal compounds. AIMS OF STUDY: To record and validate the use of medicinal Piper species by rural people of Alto Amazonas Province (Peru) and annotate active compounds using a correlation study and a data mining approach. MATERIALS AND METHODS: Rural communities were interviewed about traditional medication against parasite infections with medicinal Piper species. Ethnopharmacological surveys were undertaken in five mestizo villages, namely: Nueva Arica, Shucushuyacu, Parinari, Lagunas and Esperanza, and one Shawi community (Balsapuerto village). All communities belong to the Alto Amazonas Province (Loreto region, Peru). Seventeen Piper species were collected according to their traditional use for the treatment of parasitic diseases, 35 extracts (leaves or leaves and stems) were tested in vitro on P. falciparum (3D7 chloroquine-sensitive strain and W2 chloroquine-resistant strain), Leishmania donovani LV9 strain and Trypanosoma brucei gambiense. Assessments were performed on HUVEC cells and RAW 264.7 macrophages. The annotation of active compounds was realized by metabolomic analysis and molecular networking approach. RESULTS: Nine extracts were active (IC50 ≤ 10 µg/mL) on 3D7 P. falciparum and only one on W2 P. falciparum, six on L. donovani (axenic and intramacrophagic amastigotes) and seven on Trypanosoma brucei gambiense. Only one extract was active on all three parasites (P. lineatum). After metabolomic analyses and annotation of compounds active on Leishmania, P. strigosum and P. pseudoarboreum were considered as potential sources of leishmanicidal compounds. CONCLUSIONS: This ethnopharmacological study and the associated in vitro bioassays corroborated the relevance of use of Piper species in the Amazonian traditional medicine, especially in Peru. A series of Piper species with few previously available phytochemical data have good antiprotozoal activity and could be a starting point for subsequent promising work. Metabolomic approach appears to be a smart, quick but still limited methodology to identify compounds with high probability of biological activity.


Asunto(s)
Antiprotozoarios/metabolismo , Etnofarmacología/métodos , Medicina Tradicional/métodos , Metabolómica/métodos , Piper/metabolismo , Extractos Vegetales/metabolismo , Animales , Antimaláricos/aislamiento & purificación , Antimaláricos/metabolismo , Antimaláricos/uso terapéutico , Antiprotozoarios/aislamiento & purificación , Antiprotozoarios/uso terapéutico , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Leishmania donovani/efectos de los fármacos , Leishmania donovani/metabolismo , Mesocricetus , Ratones , Perú/etnología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Células RAW 264.7 , Encuestas y Cuestionarios
13.
Proc Natl Acad Sci U S A ; 117(44): 27627-27636, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33087565

RESUMEN

Dengue virus (DENV) subdues cell membranes for its cellular cycle by reconfiguring phospholipids in humans and mosquitoes. Here, we determined how and why DENV reconfigures phospholipids in the mosquito vector. By inhibiting and activating the de novo phospholipid biosynthesis, we demonstrated the antiviral impact of de novo-produced phospholipids. In line with the virus hijacking lipids for its benefit, metabolomics analyses indicated that DENV actively inhibited the de novo phospholipid pathway and instead triggered phospholipid remodeling. We demonstrated the early induction of remodeling during infection by using isotope tracing in mosquito cells. We then confirmed in mosquitoes the antiviral impact of de novo phospholipids by supplementing infectious blood meals with a de novo phospholipid precursor. Eventually, we determined that phospholipid reconfiguration was required for viral genome replication but not for the other steps of the virus cellular cycle. Overall, we now propose that DENV reconfigures phospholipids through the remodeling cycle to modify the endomembrane and facilitate formation of the replication complex. Furthermore, our study identified de novo phospholipid precursor as a blood determinant of DENV human-to-mosquito transmission.


Asunto(s)
Aedes/virología , Virus del Dengue/fisiología , Dengue/transmisión , Mosquitos Vectores/virología , Fosfolípidos/biosíntesis , Aedes/enzimología , Animales , Línea Celular , Membrana Celular/metabolismo , Dengue/prevención & control , Dengue/virología , Virus del Dengue/patogenicidad , Genoma Viral , Humanos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Metabolismo de los Lípidos/genética , Redes y Vías Metabólicas/genética , Metabolómica , Mosquitos Vectores/enzimología , Interferencia de ARN , ARN Viral/metabolismo , Replicación Viral
14.
Anal Chem ; 92(14): 9971-9981, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32589017

RESUMEN

Untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) is currently the gold-standard technique to determine the full chemical diversity in biological samples. However, this approach still has many limitations; notably, the difficulty of accurately estimating the number of unique metabolites profiled among the thousands of MS ion signals arising from chromatograms. Here, we describe a new workflow, MS-CleanR, based on the MS-DIAL/MS-FINDER suite, which tackles feature degeneracy and improves annotation rates. We show that implementation of MS-CleanR reduces the number of signals by nearly 80% while retaining 95% of unique metabolite features. Moreover, the annotation results from MS-FINDER can be ranked according to the database chosen by the user, which enhance identification accuracy. Application of MS-CleanR to the analysis of Arabidopsis thaliana grown in three different conditions fostered class separation resulting from multivariate data analysis and led to annotation of 75% of the final features. The full workflow was applied to metabolomic profiles from three strains of the leguminous plant Medicago truncatula that have different susceptibilities to the oomycete pathogen Aphanomyces euteiches. A group of glycosylated triterpenoids overrepresented in resistant lines were identified as candidate compounds conferring pathogen resistance. MS-CleanR is implemented through a Shiny interface for intuitive use by end-users (available at https://github.com/eMetaboHUB/MS-CleanR).


Asunto(s)
Arabidopsis/metabolismo , Medicago truncatula/metabolismo , Metabolómica , Programas Informáticos , Cromatografía Líquida de Alta Presión , Bases de Datos Factuales , Espectrometría de Masas
15.
PLoS Pathog ; 15(12): e1008199, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31815960

RESUMEN

More than half of the world population is at risk of dengue virus (DENV) infection because of the global distribution of its mosquito vectors. DENV is an envelope virus that relies on host lipid membranes for its life-cycle. Here, we characterized how DENV hijacks the mosquito lipidome to identify targets for novel transmission-blocking interventions. To describe metabolic changes throughout the mosquito DENV cycle, we deployed a Liquid chromatography-high resolution mass spectrometry (LC-HRMS) workflow including spectral similarity annotation in cells, midguts and whole mosquitoes at different times post infection. We revealed a major aminophospholipid reconfiguration with an overall early increase, followed by a reduction later in the cycle. We phylogenetically characterized acylglycerolphosphate acyltransferase (AGPAT) enzyme isoforms to identify those that catalyze a rate-limiting step in phospholipid biogenesis, the acylation of lysophosphatidate to phosphatidate. We showed that DENV infection decreased AGPAT1, but did not alter AGPAT2 expression in cells, midguts and mosquitoes. Depletion of either AGPAT1 or AGPAT2 increased aminophospholipids and partially recapitulated DENV-induced reconfiguration before infection in vitro. However, only AGPAT1 depletion promoted infection by maintaining high aminophospholipid concentrations. In mosquitoes, AGPAT1 depletion also partially recapitulated DENV-induced aminophospholipid increase before infection and enhanced infection by maintaining high aminophospholipid concentrations. These results indicate that DENV inhibition of AGPAT1 expression promotes infection by increasing aminophospholipids, as observed in the mosquito's early DENV cycle. Furthermore, in AGPAT1-depleted mosquitoes, we showed that enhanced infection was associated with increased consumption/redirection of aminophospholipids. Our study suggests that DENV regulates aminophospholipids, especially phosphatidylcholine and phosphatidylethanolamine, by inhibiting AGPAT1 expression to increase aminophospholipid availability for virus multiplication.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Virus del Dengue/metabolismo , Proteínas de Insectos/metabolismo , Mosquitos Vectores/metabolismo , Mosquitos Vectores/virología , Aedes , Animales , Interacciones Huésped-Parásitos/fisiología , Fosfolípidos/metabolismo
16.
Molecules ; 24(24)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835791

RESUMEN

With an estimated annual incidence of one million cases, leishmaniasis is one of the top five vector-borne diseases. Currently available medical treatments involve side effects, including toxicity, non-specific targeting, and resistance development. Thus, new antileishmanial chemical entities are of the utmost interest to fight against this disease. The aim of this study was to obtain potential antileishmanial natural products from Psidium guajava leaves using a metabolomic workflow. Several crude extracts from P. guajava leaves harvested from different locations in the Lao People's Democratic Republic (Lao PDR) were profiled by liquid chromatography coupled to high-resolution mass spectrometry, and subsequently evaluated for their antileishmanial activities. The putative active compounds were highlighted by multivariate correlation analysis between the antileishmanial response and chromatographic profiles of P. guajava mixtures. The results showed that the pooled apolar fractions from P. guajava were the most active (IC50 = 1.96 ± 0.47 µg/mL). Multivariate data analysis of the apolar fractions highlighted a family of triterpenoid compounds, including jacoumaric acid (IC50 = 1.318 ± 0.59 µg/mL) and corosolic acid (IC50 = 1.01 ± 0.06 µg/mL). Our approach allowed the identification of antileishmanial compounds from the crude extracts in only a small number of steps and can be easily adapted for use in the discovery workflows of several other natural products.


Asunto(s)
Antiprotozoarios/análisis , Metabolómica/métodos , Fitoquímicos/análisis , Psidium/química , Antiprotozoarios/farmacología , Cromatografía Liquida , Concentración 50 Inhibidora , Laos , Leishmania/efectos de los fármacos , Espectrometría de Masas , Fitoquímicos/farmacología , Hojas de la Planta/química , Triterpenos/química , Triterpenos/farmacología
17.
Molecules ; 24(12)2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31200456

RESUMEN

Phytochemical extracts are highly complex chemical mixtures. In the context of an increasing demand for phytopharmaceuticals, assessment of the phytochemical equivalence of extraction procedures is of utmost importance. Compared to routine analytical methods, comprehensive metabolite profiling has pushed forward the concept of phytochemical equivalence. In this study, an untargeted metabolomic approach was used to cross-compare four marketed extracts from Serenoa repens obtained with three different extraction processes: ethanolic, hexanic and sCO2 (supercritical carbon dioxide). Our approach involved a biphasic extraction of native compounds followed by liquid chromatography coupled to a high-resolution mass spectrometry based metabolomic workflow. Our results showed significant differences in the contents of major and minor compounds according to the extraction solvent used. The analyses showed that ethanolic extracts were supplemented in phosphoglycerides and polyphenols, hexanic extracts had higher amounts of free fatty acids and minor compounds, and sCO2 samples contained more glycerides. The discriminant model in this study could predict the extraction solvent used in commercial samples and highlighted the specific biomarkers of each process. This metabolomic survey allowed the authors to assess the phytochemical content of extracts and finished products of S. repens and unequivocally established that sCO2, hexanic and ethanolic extracts are not chemically equivalent and are therefore unlikely to be pharmacologically equivalent.


Asunto(s)
Productos Biológicos/química , Metabolómica/métodos , Serenoa/química , Ácidos Grasos/química , Glicerofosfolípidos/química , Espectrometría de Masas , Fitoquímicos/química , Extractos Vegetales/química , Polifenoles/química
18.
Phytochemistry ; 163: 99-110, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31035059

RESUMEN

Molecular phylogenetics based on nucleotide sequence comparisons has profoundly influenced plant taxonomy. A comprehensive chemotaxonomical approach based on GC-MS and UHPLC-HRMS profiling was evaluated for its ability to characterize a large collection of plants all in the violet family Violaceae (n = 111) and thus decipher the taxonomy. A thorough identification of violets is challenging due to their natural hybridization and phenotypic variability. Phylogenetic inference performed on ribosomal internal transcribed spacer sequences using maximum likelihood and neighbor-joining distance methods allowed the clear identification of 58% of the collection. Metabolomic approaches with multivariate data analysis were performed on SPME/GC-MS chromatograms of volatile compounds emitted by fresh mature flowers and on UHPLC-HRMS/MS leaf extracts for non-volatile compounds. Interestingly, molecular and biochemical approaches provided separate classifications while highlighting several common clusters. The profiling of secondary metabolites was proved most suitable for the classification of hundreds of extracts. The combination of phylogenetic and chemotaxonomic approaches, allowed the classification of 96% of the entire collection. A correlation network revealed specific chemotaxonomic biomarkers, in particular flavonoids, coumarins and cyclotides. Overall, our pioneering approach could be useful to solve misclassification issues within collections of close plant species.


Asunto(s)
Cumarinas/análisis , Ciclotidas/genética , Flavonoides/genética , Viola/genética , Biomarcadores/análisis , Biomarcadores/metabolismo , Cromatografía Líquida de Alta Presión , Cumarinas/metabolismo , Ciclotidas/metabolismo , Flavonoides/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Fenotipo , Filogenia , Viola/metabolismo
19.
PLoS One ; 13(10): e0206093, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30359409

RESUMEN

Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family. Although infection with ZIKV generally leads to mild disease, its recent emergence in the Americas has been associated with an increase in the development of the Guillain-Barré syndrome in adults, as well as with neurological complications, in particular congenital microcephaly, in new-borns. To date, little information is available on neuroinflammation induced by ZIKV, notably in microglial cells in the context of their metabolic activity, a series of chemical transformations that are essential for their growth, reproduction, structural maintenance and environmental responses. Therefore, in the present study we investigated the metabolomic profile of ZIKV-infected microglia. Microglial cells were exposed to ZIKV at different time points and were analyzed by a Liquid Chromatography-High Resolution mass spectrometry-based metabolomic approach. The results show that ZIKV infection in microglia leads to modulation of the expression of numerous metabolites, including lysophospholipids, particulary Lysophosphatidylcholine, and phospholipids such as Phosphatidylcholine, Phosphatidylserine, Ceramide and Sphingomyelin, and carboxylicic acids as Undecanedioic and Dodecanedioic acid. Some of these metabolites are involved in neuronal differentiation, regulation of apoptosis, virion architecture and viral replication. ZIKV infection was associated with concomitant secretion of inflammatory mediators linked with central nervous system inflammation such as IL-6, TNF-α, IL-1ß, iNOS and NO. It also resulted in the upregulation of the expression of the gene encoding CX3CR1, a chemokine receptor known to regulate functional synapse plasticity and signaling between microglial cells. These findings highlight an important role for microglia and their metabolites in the process of neuroinflammation that occurs during ZIKV pathogenesis.


Asunto(s)
Metaboloma/fisiología , Microglía/metabolismo , Infección por el Virus Zika/metabolismo , Animales , Células Cultivadas , Chlorocebus aethiops , Culicidae , Feto/citología , Feto/virología , Humanos , Metabolómica , Microcefalia/metabolismo , Microcefalia/patología , Microglía/patología , Células Vero , Replicación Viral/fisiología , Virus Zika/fisiología , Infección por el Virus Zika/patología
20.
Pharm Biol ; 56(1): 385-392, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30261794

RESUMEN

CONTEXT: Sickle cell disease is a common inherited blood disorder affecting millions of people worldwide. Due to lack of progress in drug discovery for a suitable treatment, sufferers often turn to traditional medicines that take advantage of the plant extracts activity used by traditional healers. OBJECTIVE: This study optimizes an anti-sickling screening test to identify preparations capable of reverting sickle cells back to the morphology of normal red blood cells. We focused on the miniaturization and practicability of the assay, so that it can be adapted to the laboratory conditions commonly found in less developed countries. MATERIALS AND METHODS: We tested two traditional anti-sickling herbal medicines, FACA® and DREPANOSTAT®, composed of Zanthoxylum zanthoxyloides (Lam.) Zepern. & Timler (Rutaceae) and Calotropis procera (Aiton) Dryand. (Apocynaceae) at screening concentrations of hydroethanol extracts from 0.2 to 1 mg/mL. Potential bioactive molecules present in the extracts were profiled using Ultra High Performance Liquid Chromatography coupled with High Resolution Mass Spectrometry (UHPLC-HRMS/MS) method, identified through HRMS, MS/MS spectra and in silico fragmentation tools. RESULTS: Hydroethanol extracts of FACA® and DREPANOSTAT® showed low anti-sickling activity, inhibiting less than 10% of the sickling process. The UHPLC-HRMS/MS profiles identified 28 compounds (18 in FACA® and 15 in DREPANOSTAT®, including common compounds) among which l-phenylalanine is already described as potential anti-sickling agent. When used as positive control, 7 mg/mL phenylalanine reduced the sickled RBC to 52%. DISCUSSION AND CONCLUSIONS: This assay has been optimized for the easy screening of plant extracts or extracted compounds from bioassay guided fractionation, valuable to laboratories from less developed countries.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Antidrepanocíticos/farmacología , Calotropis , Medicina Tradicional , Extractos Vegetales/farmacología , Zanthoxylum , Anemia de Células Falciformes/sangre , Antidrepanocíticos/aislamiento & purificación , Antidrepanocíticos/uso terapéutico , Evaluación Preclínica de Medicamentos/métodos , Humanos , Medicina Tradicional/métodos , Microesferas , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA