Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Environ Sci Technol ; 58(37): 16302-16315, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39236221

RESUMEN

Chemical exposomes can now be comprehensively measured in human blood, but knowledge of their variability and longitudinal stability is required for robust application in cohort studies. Here, we applied high-resolution chemical exposomics to plasma of 46 adults, each sampled 6 times over 2 years in a multiomic cohort, resulting in 276 individual exposomes. In addition to quantitative analysis of 83 priority target analytes, we discovered and semiquantified substances that have rarely or never been reported in humans, including personal care products, pesticide transformation products, and polymer additives. Hierarchical cluster analysis for 519 confidently annotated substances revealed unique and distinctive coexposures, including clustered pesticides, poly(ethylene glycols), chlorinated phenols, or natural substances from tea and coffee; interactive heatmaps were publicly deposited to support open exploration of the complex (meta)data. Intraclass correlation coefficients (ICC) for all annotated substances demonstrated the relatively low stability of the exposome compared to that of proteome, microbiome, and endogenous small molecules. Implications are that the chemical exposome must be measured more frequently than other omics in longitudinal studies and four longitudinal exposure types are defined that can be considered in study design. In this small cohort, mixed-effect models nevertheless revealed significant associations between testosterone and perfluoroalkyl substances, demonstrating great potential for longitudinal exposomics in precision health research.


Asunto(s)
Exposoma , Humanos , Estudios de Cohortes , Estudios Longitudinales , Exposición a Riesgos Ambientales , Masculino , Adulto , Femenino
2.
Cell Biol Toxicol ; 40(1): 69, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136868

RESUMEN

Many persistent organic pollutants (POPs) are suspected endocrine disruptors and it is important to investigate their effects at low concentrations relevant to human exposure. Here, the OECD test guideline #456 steroidogenesis assay was downscaled to a 96-well microplate format to screen 24 POPs for their effects on viability, and testosterone and estradiol synthesis using the human adrenocortical cell line H295R. The compounds (six polyfluoroalkyl substances, five organochlorine pesticides, ten polychlorinated biphenyls and three polybrominated diphenyl ethers) were tested at human-relevant levels (1 nM to 10 µM). Increased estradiol synthesis, above the OECD guideline threshold of 1.5-fold solvent control, was shown after exposure to 10 µM PCB-156 (153%) and PCB-180 (196%). Interestingly, the base hormone synthesis varied depending on the cell batch. An alternative data analysis using a linear mixed-effects model that include multiple independent experiments and considers batch-dependent variation was therefore applied. This approach revealed small but statistically significant effects on estradiol or testosterone synthesis for 17 compounds. Increased testosterone levels were demonstrated even at 1 nM for PCB-74 (18%), PCB-99 (29%), PCB-118 (16%), PCB-138 (19%), PCB-180 (22%), and PBDE-153 (21%). The MTT assay revealed significant effects on cell viability after exposure to 1 nM of perfluoroundecanoic acid (12%), 3 nM PBDE-153 (9%), and 10 µM of PCB-156 (6%). This shows that some POPs can interfere with endocrine signaling at concentrations found in human blood, highlighting the need for further investigation into the toxicological mechanisms of POPs and their mixtures at low concentrations relevant to human exposure.


Asunto(s)
Supervivencia Celular , Disruptores Endocrinos , Contaminantes Orgánicos Persistentes , Bifenilos Policlorados , Testosterona , Humanos , Testosterona/biosíntesis , Testosterona/metabolismo , Contaminantes Orgánicos Persistentes/metabolismo , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/farmacología , Supervivencia Celular/efectos de los fármacos , Bifenilos Policlorados/toxicidad , Éteres Difenilos Halogenados/toxicidad , Estradiol/metabolismo , Estrógenos , Línea Celular , Plaguicidas/toxicidad , Hidrocarburos Clorados/toxicidad
3.
Epigenomes ; 8(3)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39189257

RESUMEN

We examined whether prenatal exposure to two classes of endocrine-disrupting chemicals (EDCs) was associated with infant epigenetic age acceleration (EAA), a DNA methylation biomarker of aging. Participants included 224 maternal-infant pairs from a Canadian pregnancy cohort study. Two bisphenols and 12 phthalate metabolites were measured in maternal second trimester urines. Buccal epithelial cell cheek swabs were collected from 3 month old infants and DNA methylation was profiled using the Infinium MethylationEPIC BeadChip. The Pediatric-Buccal-Epigenetic tool was used to estimate EAA. Sex-stratified robust regressions examined individual chemical associations with EAA, and Bayesian kernel machine regression (BKMR) examined chemical mixture effects. Adjusted robust models showed that in female infants, prenatal exposure to total bisphenol A (BPA) was positively associated with EAA (B = 0.72, 95% CI: 0.21, 1.24), and multiple phthalate metabolites were inversely associated with EAA (Bs from -0.36 to -0.66, 95% CIs from -1.28 to -0.02). BKMR showed that prenatal BPA was the most important chemical in the mixture and was positively associated with EAA in both sexes. No overall chemical mixture effects or male-specific associations were noted. These findings indicate that prenatal EDC exposures are associated with sex-specific deviations in biological aging, which may have lasting implications for child health and development.

4.
Environ Sci Technol ; 58(29): 12784-12822, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38984754

RESUMEN

In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.


Asunto(s)
Espectrometría de Masas , Humanos , Espectrometría de Masas/métodos , Exposoma , Metabolómica , Proteómica/métodos , Exposición a Riesgos Ambientales
5.
Environ Res ; 257: 119276, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38830392

RESUMEN

BACKGROUND: Bisphenols and phthalates are two classes of endocrine-disrupting chemicals (EDCs) thought to influence weight and adiposity. Limited research has investigated their influence on maternal weight changes, and no prior work has examined maternal fat mass. We examined the associations between exposure to these chemicals during pregnancy and multiple maternal weight and fat mass outcomes. METHODS: This study included a sample of 318 women enrolled in a Canadian prospective pregnancy cohort. Second trimester urinary concentrations of 2 bisphenols and 12 phthalate metabolites were quantified. Self-reported and measured maternal weights and measured skinfold thicknesses were used to calculate gestational weight gain, 3-months and 3- to 5-years postpartum weight retention, late pregnancy fat mass gain, total postpartum fat mass loss, and late postpartum fat mass retention. Adjusted robust regressions examined associations between chemicals and outcomes in the entire study population and sub-groups stratified by pre-pregnancy body mass index (BMI). Bayesian kernel machine regression examined chemical mixture effects. RESULTS: Among women with underweight or normal pre-pregnancy BMIs, MBzP was negatively associated with weight retention at 3- to 5-years postpartum (B = -0.04, 95%CI: -0.07, -0.01). Among women with overweight or obese pre-pregnancy BMIs, MEHP and MMP were positively associated with weight retention at 3-months and 3- to 5-years postpartum, respectively (B's = 0.12 to 0.63, 95%CIs: 0.02, 1.07). DEHP metabolites and MCNP were positively associated with late pregnancy fat mass gain and late postpartum fat mass retention (B's = 0.04 to 0.18, 95%CIs: 0.001, 0.32). Further, the mixture of EDCs was positively associated with late pregnancy fat mass gain. CONCLUSION: In this cohort, pre-pregnancy BMI was a key determinant of the associations between second trimester exposure to bisphenols and phthalates and maternal weight changes and fat accumulation. Investigations of underlying physiological mechanisms, windows of susceptibility, and impacts on maternal and infant health are needed.


Asunto(s)
Compuestos de Bencidrilo , Índice de Masa Corporal , Fenoles , Ácidos Ftálicos , Humanos , Femenino , Fenoles/orina , Fenoles/efectos adversos , Ácidos Ftálicos/orina , Embarazo , Adulto , Compuestos de Bencidrilo/orina , Compuestos de Bencidrilo/efectos adversos , Estudios Prospectivos , Exposición Materna/efectos adversos , Contaminantes Ambientales/orina , Disruptores Endocrinos/orina , Adulto Joven , Adiposidad/efectos de los fármacos , Canadá
6.
Reprod Toxicol ; 127: 108612, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782143

RESUMEN

The increasing global prevalence of gestational diabetes mellitus (GDM) has been hypothesized to be associated with maternal exposure to environmental chemicals. Here, among 420 women participating in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort study, we examined associations between GDM and second trimester blood or urine concentrations of endocrine disrupting chemicals (EDCs): bisphenol-A (BPA), bisphenol-S (BPS), twelve phthalate metabolites, eight perfluoroalkyl acids (PFAAs), and eleven trace elements. Fifteen (3.57%) of the women were diagnosed with GDM, and associations between the environmental chemical exposures and GDM diagnosis were examined using multiple logistic and LASSO regression analyses in single- and multi-chemical exposure models, respectively. In single chemical exposure models, BPA and mercury were associated with increased odds of GDM, while a significant inverse association was observed for zinc. Double-LASSO regression analysis selected mercury (AOR: 1.51, CI: 1.12-2.02), zinc (AOR: 0.017, CI: 0.0005-0.56), and perfluoroundecanoic acid (PFUnA), a PFAAs, (AOR: 0.43, CI: 0.19-0.94) as the best predictors of GDM. The combined data for this Canadian cohort suggest that second trimester blood mercury was a robust predictor of GDM diagnosis, whereas blood zinc and PFUnA were protective factors. Research into mechanisms that underlie the associations between mercury, zinc, PFUnA, and the development of GDM is needed.


Asunto(s)
Compuestos de Bencidrilo , Diabetes Gestacional , Disruptores Endocrinos , Contaminantes Ambientales , Fluorocarburos , Exposición Materna , Fenoles , Ácidos Ftálicos , Femenino , Humanos , Embarazo , Fluorocarburos/sangre , Diabetes Gestacional/epidemiología , Diabetes Gestacional/sangre , Fenoles/sangre , Fenoles/orina , Adulto , Compuestos de Bencidrilo/sangre , Compuestos de Bencidrilo/orina , Ácidos Ftálicos/orina , Ácidos Ftálicos/sangre , Disruptores Endocrinos/sangre , Disruptores Endocrinos/orina , Exposición Materna/efectos adversos , Contaminantes Ambientales/sangre , Estudios de Cohortes , Oligoelementos/sangre , Oligoelementos/orina , Ácidos Alcanesulfónicos/sangre , Adulto Joven , Sulfonas
7.
Epigenomes ; 8(1)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38390895

RESUMEN

Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer that can affect immune system development and susceptibility to infection. Aging processes (measured as epigenetic age acceleration (EAA)) may mediate the immune-related effects of prenatal exposure to DEHP. This study's objective was to examine associations between prenatal DEHP exposure, EAA at three months of age, and the number of upper respiratory infections (URIs) from 12 to 18 months of age using a sample of 69 maternal-child pairs from a Canadian pregnancy cohort. Blood DNA methylation data were generated using the Infinium HumanMethylation450 BeadChip; EAA was estimated using Horvath's pan-tissue clock. Robust regressions examined overall and sex-specific associations. Higher prenatal DEHP exposure (B = 6.52, 95% CI = 1.22, 11.81) and increased EAA (B = 2.98, 95% CI = 1.64, 4.32) independently predicted more URIs. In sex-specific analyses, some similar effects were noted for boys, and EAA mediated the association between prenatal DEHP exposure and URIs. In girls, higher prenatal DEHP exposure was associated with decreased EAA, and no mediation was noted. Higher prenatal DEHP exposure may be associated with increased susceptibility to early childhood URIs, particularly in boys, and aging biomarkers such as EAA may be a biological mechanism. Larger cohort studies examining the potential developmental immunotoxicity of phthalates are needed.

8.
Environ Int ; 182: 108335, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38006772

RESUMEN

Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) has increased in northern Alberta, Canada, due to industrial development in the Athabasca oil sands region (AOSR). However, the sources, summertime deposition fluxes and associated spatial patterns are poorly characterized, and the magnitude of contamination has not been directly contrasted with comparable measurements around large Canadian cities. PAHs were measured in Sphagnum moss collected from 30 bogs in the AOSR and compared with reference moss collected from various remote, rural and near-urban sites in Alberta and Ontario. At all 39 locations, strong correlations between depositional fluxes of PAHs and accumulation rates of ash (n = 117, r = 0.877, p < 0.001) implied that the main source of PAHs to moss was atmospheric deposition of particles. Average PAH concentrations at near-field AOSR sites (mean [SD], 62.4 [24.3] ng/g) were significantly higher than at far-field AOSR sites (44.9 [20.8] ng/g; p = 0.038) or the 7 reference sites in Alberta (20.6 [3.5] ng/g; p < 0.001). In fact, average PAH concentrations across the entire AOSR (7,850 km2) were approximately twice as high as in London, Ontario, or near petroleum upgrading and major traffic corridors in Edmonton, Alberta. A chemical mass balance model estimated that both delayed petcoke (33 % of PAHs) and fine tailings (38 % of PAHs) were the major sources of PAHs in the AOSR. Over the 2015 summer growing season, we estimate that 101-110 kg of PAHs (on 14,300-17,300 tonnes of PAH-containing dusts) were deposited to the AOSR within a 50 km radius of surface mining. Given that the highest PAH deposition was to the northern quadrant of the AOSR, which includes the First Nations community of Fort MacKay, further dust control measures should be considered to protect human and environmental health in the region.


Asunto(s)
Petróleo , Hidrocarburos Policíclicos Aromáticos , Humanos , Yacimiento de Petróleo y Gas , Polvo/análisis , Alberta , Hidrocarburos Policíclicos Aromáticos/análisis , Monitoreo del Ambiente
9.
Environ Pollut ; 338: 122608, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37742857

RESUMEN

The sources, biogeochemical controls and sinks of perfluoroalkyl substances, such as perfluoroalkyl acids (PFAAs), in polar coastal regions are largely unknown. These were evaluated by measuring a large multi-compartment dataset of PFAAs concentrations at coastal Livingston and Deception Islands (maritime Antarctica) during three austral summers. PFAAs were abundant in atmospheric-derived samples (aerosols, rain, snow), consistent with the importance of atmospheric deposition as an input of PFAAs to Antarctica. Such PFAAs deposition was unequivocally demonstrated by the occurrence of PFAAs in small Antarctic lakes. Several lines of evidence supported the relevant amplification of PFAAs concentrations in surface waters driven by snow scavenging of sea-spray aerosol-bound PFAAs followed by snow-melting. For example, vertical profiles showed higher PFAAs concentrations at lower-salinity surface seawaters, and PFAAs concentrations in snow were significantly higher than in seawater. The higher levels of PFAAs at Deception Island than at Livingston Island are consistent with the semi-enclosed nature of the bay. Concentrations of PFOS decreased from 2014 to 2018, consistent with observations in other oceans. The sink of PFAAs due to the biological pump, transfer to the food web, and losses due to sea-spray aerosols alone are unlikely to have driven the decrease in PFOS concentrations. An exploratory assessment of the potential sinks of PFAAs suggests that microbial degradation of perfluoroalkyl sulfonates should be a research priority for the evaluation of PFAAs persistence in the coming decade.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Regiones Antárticas , Océanos y Mares , Agua de Mar , Aerosoles , Fluorocarburos/análisis , Monitoreo del Ambiente , Ácidos Alcanesulfónicos/análisis , Contaminantes Químicos del Agua/análisis
10.
Environ Sci Technol ; 57(36): 13635-13645, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37648245

RESUMEN

The leaching of per- and polyfluoroalkyl substances (PFASs) from Australian firefighting training grounds has resulted in extensive contamination of groundwater and nearby farmlands. Humans, farm animals, and wildlife in these areas may have been exposed to complex mixtures of PFASs from aqueous film-forming foams (AFFFs). This study aimed to identify PFAS classes in pooled whole blood (n = 4) and serum (n = 4) from cattle exposed to AFFF-impacted groundwater and potentially discover new PFASs in blood. Thirty PFASs were identified at various levels of confidence (levels 1a-5a), including three novel compounds: (i) perfluorohexanesulfonamido 2-hydroxypropanoic acid (FHxSA-HOPrA), (ii) methyl((perfluorohexyl)sulfonyl)sulfuramidous acid, and (iii) methyl((perfluorooctyl)sulfonyl)sulfuramidous acid, belonging to two different classes. Biotransformation intermediate, perfluorohexanesulfonamido propanoic acid (FHxSA-PrA), hitherto unreported in biological samples, was detected in both whole blood and serum. Furthermore, perfluoroalkyl sulfonamides, including perfluoropropane sulfonamide (FPrSA), perfluorobutane sulfonamide (FBSA), and perfluorohexane sulfonamide (FHxSA) were predominantly detected in whole blood, suggesting that these accumulate in the cell fraction of blood. The suspect screening revealed several fluoroalkyl chain-substituted PFAS. The results suggest that targeting only the major PFASs in the plasma or serum of AFFF-exposed mammals likely underestimates the toxicological risks associated with exposure. Future studies of AFFF-exposed populations should include whole-blood analysis with high-resolution mass spectrometry to understand the true extent of PFAS exposure.


Asunto(s)
Fluorocarburos , Agua Subterránea , Humanos , Animales , Bovinos , Australia , Animales Salvajes , Plasma , Mamíferos
11.
Environ Res ; 237(Pt 1): 116838, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37544468

RESUMEN

Exposure to environmental chemicals has been linked to an increased risk of pregnancy-induced hypertension (PIH). This prospective cohort study examined the associations between PIH and maternal chemical exposure to four classes of chemicals (i.e., phthalates, bisphenols, perfluoroalkyl acids, non-essential metals and trace minerals). Participants included 420 pregnant women from the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort who had data available on diagnosed PIH and environmental chemical exposure. Twelve phthalate metabolites, two bisphenols, eight perfluoroalkyl acids and eleven non-essential metals or trace minerals were quantified in maternal urine or blood samples collected in the second trimester of pregnancy. Associations between the urinary and blood concentrations of these chemicals and PIH were assessed using multiple logistic and LASSO regression analyses in single- and multi-chemical exposure models, respectively. Thirty-five (8.3%) participants were diagnosed with PIH. In single chemical exposure models, two phthalate metabolites, mono-methyl phthalate (MMP) and monoethyl phthalate (MEP), three perfluoroalkyl acids, perfluoroheptanoic acid (PFHpA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA), and one metal, manganese, were associated with increased odds of PIH. The metabolites of di (2-ethylhexyl) phthalate (DEHP) and the molar sum of these metabolites, as well as antimony, displayed trend associations (p < 0.10). In multi-chemical exposure models using LASSO penalized regressions and double-LASSO regressions, MEP (AOR: 1.43, 95% CI: 1.09-1.88, p = 0.009) and PFNA (AOR: 2.03, 95% CI: 1.01-4.07, p = 0.04) were selected as the chemicals most highly associated with PIH. These findings suggest that maternal levels of phthalates and perfluoroalkyl acids may be associated with the diagnosis on PIH. Future research should consider both individual and multi-chemical exposures when examining predictors of PIH and other maternal cardiometabolic health disorders, such as preeclampsia, eclampsia, HELLP syndrome, and gestational diabetes.

12.
Environ Int ; 178: 108087, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37454627

RESUMEN

BACKGROUND: Perfluoroalkyl acids (PFAAs) within the broader class of per- and polyfluoroalkyl substances (PFAS) are present in human serum as isomer mixtures, but epidemiological studies have yet to address isomer-specific associations with child development and behavior. OBJECTIVES: To examine associations between prenatal exposure to 25 PFAAs, including perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) isomers, and child neurodevelopment among 490 mother-child pairs in a prospective Canadian birth cohort, the Alberta Pregnancy Outcomes and Nutrition (APrON) study. To consider the influence of a classic neurotoxicant, total mercury (THg), based on its likelihood of co-exposure with PFAAs from common dietary sources. METHODS: Maternal blood samples were collected in the second trimester and child neurodevelopment was assessed at 2 years of age using the Bayley Scales of Infant and Toddler Development, 3rd Edition (Bayley-III). Linear or curvilinear multiple regression models were used to examine associations between exposures and neurodevelopment outcomes. RESULTS: Select PFAAs were associated with lower Cognitive composite scores, including perfluoroheptanoate (PFHpA) (ß = -0.88, 95% confidence interval (CI): -1.7, -0.06) and perfluorododecanoate (PFDoA) (ß = -2.0, 95% CI: -3.9, -0.01). Non-linear relationships revealed associations of total PFOS (ß = -4.4, 95% CI: -8.3, -0.43), and linear-PFOS (ß = -4.0, 95% CI: -7.5, -0.57) and 1m-PFOS (ß = -1.8, 95% CI: -3.3, -0.24) isomers with lower Language composite scores. Although there was no effect modification, including THg interaction terms in PFAA models revealed negative associations between perfluorononanoate (PFNA) and Motor (ß = -3.3, 95% CI: -6.2, -0.33) and Social-Emotional (ß = -3.0, 95% CI: -5.6, -0.40) composite scores. DISCUSSION: These findings reinforce previous reports of adverse effects of maternal PFAA exposure during pregnancy on child neurodevelopment. The unique hazards posed from isomers of PFOS justify isomer-specific analysis in future studies. To control for possible confounding, mercury co-exposure may be considered in studies of PFAAs.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Mercurio , Efectos Tardíos de la Exposición Prenatal , Embarazo , Lactante , Femenino , Humanos , Cohorte de Nacimiento , Estudios Prospectivos , Efectos Tardíos de la Exposición Prenatal/epidemiología , Fluorocarburos/toxicidad , Caprilatos/toxicidad , Alberta
13.
Anal Chim Acta ; 1274: 341573, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37455083

RESUMEN

Systematic selection of mobile phase and column chemistry type can be critical for achieving optimal chromatographic separation, high sensitivity, and low detection limits in liquid chromatography electrospray high resolution mass spectrometry (LC/MS). However, the selection process is challenging for non-targeted screening where the compounds of interest are not preselected nor available for method optimization. To provide general guidance, twenty different mobile phase compositions and four columns were compared for the analysis of 78 compounds with a wide range of physicochemical properties (logP range from -1.46 to 5.48), and analyte sensitivity was compared between methods. The pH, additive type, column, and organic modifier had significant effects on the analyte response factors, and acidic mobile phases (e.g. 0.1% formic acid) yielded highest sensitivity. In some cases, the effect was attributable to the difference in organic modifier content at the time of elution, depending on the mobile phase and column chemistry. Based on these findings, 0.1% formic acid, 0.1% ammonia and 5.0 mM ammonium fluoride were further evaluated for their performance in non-targeted LC/ESI/HRMS analysis of wastewater treatment plan influent and effluent, using a data dependent MS2 acquisition and two different data processing workflows (MS-DIAL, patRoon 2.1) to compare number of detected features and sensitivity. Both data-processing workflows indicated that 0.1% formic acid yielded the highest number of features in full scan spectrum (MS1), as well as the highest number of features that triggered fragmentation spectra (MS2) when dynamic exclusion was used.

14.
Neurotoxicology ; 98: 48-60, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37517784

RESUMEN

BACKGROUND: There is inconsistent evidence regarding the sex-specific associations between prenatal phthalate exposure and children's neurodevelopment. This could be due to differences in the phthalate exposures investigated and the neurodevelopmental domains assessed. OBJECTIVE: To evaluate the associations between prenatal phthalate exposure and sex-specific outcomes on measures of cognition, language, motor, executive function, and behaviour in children 2 years of age in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort. METHODS: We evaluated the associations between prenatal phthalate exposure and sex-specific neurodevelopmental outcomes in children at 2 years of age using data from 448 mothers and their children (222 girls, 226 boys). Nine phthalate metabolites were measured in maternal urine collected in the second trimester of pregnancy. Children's cognitive, language, and motor outcomes were assessed using the Bayley Scales of Infant Development - Third Edition (Bayley-III). Parents completed questionnaires on children's executive function and behavior, the Behavior Rating Inventory of Executive Function- Preschool Version (BRIEF-P) and Child Behavior Checklist (CBCL), respectively. Sex-stratified robust multivariate regressions were performed. RESULTS: Higher maternal concentrations of ΣDEHP and its metabolites were associated with lower scores on the Bayley-III Cognitive (ß's from -11.8 to -0.07 95% CI's from -21.3 to -0.01), Language (ß's from -11.7 to -0. 09, 95% CI's from -22.3 to -0.02) and Motor (ß's from -10.9 to -0.07, 95% CI from -20.4 to -0.01) composites in boys. The patterns of association in girls were in the opposite direction on the Cognitive and Language composites; on the Motor composite they were in the same direction as boys, but of reduced strength. Higher concentrations of ΣDEHP and its metabolites were associated with higher scores (i.e., more difficulties) on all measures of executive function in girls: inhibitory self-control (B's from 0.05 to 0.11, 95% CI s from -0.01 to 0.15), flexibility (B's from 0.04 to 0.11, 95% CI s from 0.01 to 0.21) and emergent metacognition (B's from -0.01 to 0.06, 95% CIs from -0.01 to 0.20). Similar patterns of attenuated associations were seen in boys. Higher concentrations of ΣDEHP and its metabolites were associated with more Externalizing Problems in girls and boys (B's from 0.03 to 6.82, 95% CIs from -0.08 to 12.0). Two phthalates, MMP and MBP, had sex-specific adverse associations on measures of executive function and behaviour, respectively, while MEP was positively associated with boys' cognitive, language, and motor performance. Limited associations were observed between mixtures of maternal phthalates and sex-specific neurodevelopmental outcomes. CONCLUSIONS: Maternal prenatal concentrations of DEHP phthalates were associated with sex specific difference on measures of cognition and language at 2 years of age, specifically, poorer outcomes in boys. Higher exposure to DEHP was associated with poorer motor, executive function, and behavioural outcomes in girls and boys but the strength of these associations differed by sex. Limited associations were noted between phthalate mixtures and child neurodevelopment.


Asunto(s)
Dietilhexil Ftalato , Contaminantes Ambientales , Ácidos Ftálicos , Efectos Tardíos de la Exposición Prenatal , Masculino , Preescolar , Lactante , Embarazo , Femenino , Humanos , Niño , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Exposición Materna/efectos adversos , Ácidos Ftálicos/toxicidad , Ácidos Ftálicos/orina , Exposición a Riesgos Ambientales , Contaminantes Ambientales/orina
15.
Environ Sci Technol ; 57(28): 10173-10184, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37394749

RESUMEN

The challenge of chemical exposomics in human plasma is the 1000-fold concentration gap between endogenous substances and environmental pollutants. Phospholipids are the major endogenous small molecules in plasma, thus we validated a chemical exposomics protocol with an optimized phospholipid-removal step prior to targeted and non-targeted liquid chromatography high-resolution mass spectrometry. Increased injection volume with negligible matrix effect permitted sensitive multiclass targeted analysis of 77 priority analytes; median MLOQ = 0.05 ng/mL for 200 µL plasma. In non-targeted acquisition, mean total signal intensities of non-phospholipids were enhanced 6-fold in positive (max 28-fold) and 4-fold in negative mode (max 58-fold) compared to a control method without phospholipid removal. Moreover, 109 and 28% more non-phospholipid molecular features were detected by exposomics in positive and negative mode, respectively, allowing new substances to be annotated that were non-detectable without phospholipid removal. In individual adult plasma (100 µL, n = 34), 28 analytes were detected and quantified among 10 chemical classes, and quantitation of per- and polyfluoroalkyl substances (PFAS) was externally validated by independent targeted analysis. Retrospective discovery and semi-quantification of PFAS-precursors was demonstrated, and widespread fenuron exposure is reported in plasma for the first time. The new exposomics method is complementary to metabolomics protocols, relies on open science resources, and can be scaled to support large studies of the exposome.


Asunto(s)
Fluorocarburos , Fosfolípidos , Adulto , Humanos , Fosfolípidos/química , Espectrometría de Masas en Tándem/métodos , Estudios Retrospectivos , Cromatografía Liquida/métodos , Fluorocarburos/análisis
16.
EBioMedicine ; 94: 104699, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37429082

RESUMEN

BACKGROUND: Exposure to perfluoroalkyl substances may affect offspring immune development and thereby increase risk of childhood asthma, but the underlying mechanisms and asthma phenotype affected by such exposure is unknown. METHODS: In the Danish COPSAC2010 cohort of 738 unselected pregnant women and their children plasma PFOS and PFOA concentrations were semi-quantified by untargeted metabolomics analyses and calibrated using a targeted pipeline in mothers (gestation week 24 and 1 week postpartum) and children (age ½, 1½ and 6 years). We examined associations between pregnancy and childhood PFOS and PFOA exposure and childhood infections, asthma, allergic sensitization, atopic dermatitis, and lung function measures, and studied potential mechanisms by integrating data on systemic low-grade inflammation (hs-CRP), functional immune responses, and epigenetics. FINDINGS: Higher maternal PFOS and PFOA exposure during pregnancy showed association with a non-atopic asthma phenotype by age 6, a protection against sensitization, and no association with atopic asthma or lung function, or atopic dermatitis. The effect was primarily driven by prenatal exposure. There was no association with infection proneness, low-grade inflammation, altered immune responses or epigenetic changes. INTERPRETATIONS: Prenatal exposure to PFOS and PFOA, but not childhood exposure, specifically increased the risk of low prevalent non-atopic asthma, whereas there was no effect on atopic asthma, lung function, or atopic dermatitis. FUNDING: All funding received by COPSAC are listed on www.copsac.com. The Lundbeck Foundation (Grant no R16-A1694); The Novo Nordic Foundation (Grant nos NNF20OC0061029, NNF170C0025014, NNF180C0031764); The Ministry of Health (Grant no 903516); Danish Council for Strategic Research (Grant no 0603-00280B); and The Capital Region Research Foundation have provided core support to the COPSAC research center. COPSAC acknowledges the National Facility for Exposomics (SciLifeLab, Sweden) for supporting calibration of the untargeted metabolomics PFAS data. BC and AS has received funding for this project from the European Union's Horizon 2020 research and innovation programme (BC: grant agreement No. 946228 DEFEND; AS: grant agreement No. 864764 HEDIMED).


Asunto(s)
Asma , Dermatitis Atópica , Fluorocarburos , Efectos Tardíos de la Exposición Prenatal , Femenino , Embarazo , Humanos , Asma/etiología , Madres , Fenotipo , Inflamación/complicaciones , Fluorocarburos/toxicidad
17.
Environ Sci Technol ; 57(17): 6808-6824, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37083417

RESUMEN

Nontarget mass spectrometry has great potential to reveal patterns of water contamination globally through community science, but few studies are conducted in low-income countries, nor with open-source workflows, and few datasets are FAIR (Findable, Accessible, Interoperable, Reusable). Water was collected from urban and rural rivers around Dhaka, Bangladesh, and analyzed by liquid chromatography high-resolution mass spectrometry in four ionization modes (electrospray ionization ±, atmospheric pressure chemical ionization ±) with data-independent MS2 acquisition. The acquisition strategy was complementary: 19,427 and 7365 features were unique to ESI and APCI, respectively. The complexity of water pollution was revealed by >26,000 unique molecular features resolved by MS-DIAL, among which >20,000 correlated with urban sources in Dhaka. A major wastewater treatment plant was not a dominant pollution source, consistent with major contributions from uncontrolled urban drainage, a result that encourages development of further wastewater infrastructures. Matching of deconvoluted MS2 spectra to public libraries resulted in 62 confident annotations (i.e., Level 1-2a) and allowed semiquantification of 42 analytes including pharmaceuticals, pesticides, and personal care products. In silico structure prediction for the top 100 unknown molecular features associated with an urban source allowed 15 additional chemicals of anthropogenic origin to be annotated (i.e., Level 3). The authentic MS2 spectra were uploaded to MassBank Europe, mass spectral data were openly shared on the MassIVE repository, a tool (i.e., MASST) that could be used for community science environmental surveillance was demonstrated, and current limitations were discussed.


Asunto(s)
Contaminantes Químicos del Agua , Contaminación del Agua , Bangladesh , Flujo de Trabajo , Cromatografía Liquida/métodos , Agua , Espectrometría de Masa por Ionización de Electrospray/métodos , Contaminantes Químicos del Agua/análisis
18.
J Dev Orig Health Dis ; 14(3): 402-414, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36939090

RESUMEN

Folate and choline are methyl donor nutrients that may play a role in fetal brain development. Animal studies have reported that prenatal folate and choline supplementation are associated with better cognitive outcomes in offspring and that these nutrients may interact and affect brain development. Human studies that have investigated associations between maternal prenatal folate or choline levels and neurodevelopmental outcomes have reported contradictory findings and no human studies have examined the potential interactive effect of folate and choline on children's neurodevelopment. During the second trimester of pregnancy, maternal red blood cell folate was measured from blood samples and choline intake was estimated using a 24-h dietary recall in 309 women in the APrON cohort. At 3-5 years of age, their children's neurodevelopment was assessed using the Wechsler Preschool and Primary Scales of Intelligence - Fourth EditionCND, NEPSY-II language and memory subtests, four behavioral executive function tasks, and the Movement Assessment Battery for Children - Second Edition. Adjusted regressions revealed no associations between maternal folate and choline levels during pregnancy and most of the child outcomes. On the Dimensional Change Card Sort, an executive function task, there was an interaction effect; at high levels of choline intake (i.e., 1 SD above the mean; 223.03 mg/day), higher maternal folate status was associated with decreased odds of receiving a passing score (ß = -0.44; 95%CI -0.81, -0.06). In conclusion, maternal folate status and choline intake during the second trimester of pregnancy were not associated with children's intelligence, language, memory, or motor outcomes at 3-4 years of age; however, their interaction may have an influence children's executive functions.


Asunto(s)
Colina , Ácido Fólico , Embarazo , Niño , Animales , Humanos , Femenino , Preescolar , Resultado del Embarazo , Suplementos Dietéticos , Alberta
19.
ACS ES T Water ; 3(2): 366-376, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38894704

RESUMEN

Oil sands process-affected water (OSPW) is a byproduct of bitumen extraction that has persistent toxicity owing to its complex mixture of organics. A prominent remediation strategy that involves aging OSPW in end-pit lakes and Base Mine Lake (BML) is the first full-scale test. Its effectiveness over the first 5 years was investigated here using real-time cell analysis, yeast estrogenic and androgenic screens (YES/YAS), and ultra-high-resolution mass spectrometry. HepG2 cytotoxicity per volume of BML organics extracted decreased with age; however, the toxic potency (i.e., toxicity per mass of extract) was not significantly different between years. This was consistent with mass spectral evidence showing no difference in chemical profiles, yet lower total abundance of organics in field-aged samples, suggestive that dilution explains the declining cytotoxicity in BML. The IC50's of BML extracts for YES/YAS antagonism were at environmental concentrations and were similar despite differences in field-age. Persistent YES/YAS antagonism and cytotoxicity were detected in experimental pond OSPW field-aged >20 years, and while organic acids were depleted here, non-acid chemical classes were enriched compared to BML, suggesting these contribute to persistent toxicity of aged OSPW. To avoid a legacy of contaminated sites, active water treatment may be required to accelerate detoxification of end-pit lakes.

20.
Exposome ; 2(1): osac007, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483216

RESUMEN

Omics-based technologies have enabled comprehensive characterization of our exposure to environmental chemicals (chemical exposome) as well as assessment of the corresponding biological responses at the molecular level (eg, metabolome, lipidome, proteome, and genome). By systematically measuring personal exposures and linking these stimuli to biological perturbations, researchers can determine specific chemical exposures of concern, identify mechanisms and biomarkers of toxicity, and design interventions to reduce exposures. However, further advancement of metabolomics and exposomics approaches is limited by a lack of standardization and approaches for assigning confidence to chemical annotations. While a wealth of chemical data is generated by gas chromatography high-resolution mass spectrometry (GC-HRMS), incorporating GC-HRMS data into an annotation framework and communicating confidence in these assignments is challenging. It is essential to be able to compare chemical data for exposomics studies across platforms to build upon prior knowledge and advance the technology. Here, we discuss the major pieces of evidence provided by common GC-HRMS workflows, including retention time and retention index, electron ionization, positive chemical ionization, electron capture negative ionization, and atmospheric pressure chemical ionization spectral matching, molecular ion, accurate mass, isotopic patterns, database occurrence, and occurrence in blanks. We then provide a qualitative framework for incorporating these various lines of evidence for communicating confidence in GC-HRMS data by adapting the Schymanski scoring schema developed for reporting confidence levels by liquid chromatography HRMS (LC-HRMS). Validation of our framework is presented using standards spiked in plasma, and confident annotations in outdoor and indoor air samples, showing a false-positive rate of 12% for suspect screening for chemical identifications assigned as Level 2 (when structurally similar isomers are not considered false positives). This framework is easily adaptable to various workflows and provides a concise means to communicate confidence in annotations. Further validation, refinements, and adoption of this framework will ideally lead to harmonization across the field, helping to improve the quality and interpretability of compound annotations obtained in GC-HRMS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA