RESUMEN
We evaluated the effect of sodium-glucose cotransporter 2 (SGLT2) inhibition on prostate cancer by evidence triangulation. Using Mendelian randomization, we found that genetically proxied SGLT2 inhibition reduced the risk of overall (odds ratio = 0.56, 95% confidence interval [CI] = 0.38 to 0.82; 79,148 prostate cancer cases and 61,106 controls), advanced, and early-onset prostate cancer. Using electronic healthcare data (nSGLT2i = 24,155; nDPP4i = 24,155), we found that the use of SGLT2 inhibitors was associated with a 23% reduced risk of prostate cancer (hazard ratio = 0.77, 95% CI = 0.61 to 0.99) in men with diabetes. Using data from two prospective cohorts (n4C = 57,779; nUK_Biobank = 165,430), we found little evidence to support the association of HbA1c with prostate cancer, implying a non-glycemic effect of SGLT2 inhibition on prostate cancer. In summary, this study provides multiple layers of evidence to support the beneficial effect of SGLT2 inhibition on reducing prostate cancer risk. Future trials are warranted to investigate whether SGLT2 inhibitors can be recommended for prostate cancer prevention.
Asunto(s)
Análisis de la Aleatorización Mendeliana , Neoplasias de la Próstata , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Estudios de Cohortes , Anciano , Hemoglobina Glucada/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Transportador 2 de Sodio-Glucosa/genética , Registros Electrónicos de SaludRESUMEN
BACKGROUND: Screening is not recommended for prostate cancer in the UK. Asymptomatic men aged ≥50 years can request a prostate-specific antigen (PSA) test following counselling on potential harms and benefits. There are areas of clinical uncertainty among GPs, resulting in the content and quality of counselling varying. AIM: To produce a consensus that can influence guidelines for UK primary care on the optimal use of the PSA test in asymptomatic men for early prostate cancer detection. DESIGN AND SETTING: Prostate Cancer UK facilitated a RAND/UCLA consensus. METHOD: Statements covering five topics were developed with a subgroup of experts. A panel of 15 experts in prostate cancer scored (round one) statements on a scale of one (strongly disagree) to nine (strongly agree). Panellists met to discuss statements before rescoring (round two). A lived experience panel of seven men scored a subset of statements with outcomes fed into the main panel. RESULTS: Of the initial 94 statements reviewed by the expert panel, a final 48/85 (56%) achieved consensus. In the absence of screening, there was consensus on proactive approaches to initiate discussions about the PSA test with men who were at higher-than-average risk. CONCLUSION: Improvements in the prostate cancer diagnostic pathway may have reduced some of the harms associated with PSA testing; however, several areas of uncertainty remain in relation to screening, including optimal PSA thresholds for referral and intervals for retesting. There is consensus on proactive approaches to testing in higher-than-average risk groups. This should prompt a review of current guidelines.
Asunto(s)
Consenso , Detección Precoz del Cáncer , Atención Primaria de Salud , Antígeno Prostático Específico , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/sangre , Antígeno Prostático Específico/sangre , Reino Unido , Persona de Mediana Edad , Tamizaje Masivo/métodos , Guías de Práctica Clínica como Asunto , Anciano , Enfermedades AsintomáticasRESUMEN
Background: Colorectal cancer (CRC) is the third most common cancer worldwide, with 1.9 million new cases in 2020 and a predicted rise to 3.2 million in 2040. Screening programmes are already in place to aid early detection and secondary prevention of CRC, but the rising prevalence means additional approaches are required in both primary and secondary prevention settings. Preventive therapy, whereby natural or synthetic agents are used to prevent, reverse or delay disease development, could be an effective strategy to further reduce cancer risk and potential agents have already been identified in conventional observational studies. However, as such studies are vulnerable to confounding and reverse causation, we aim to evaluate these observed relationships using Mendelian randomization (MR), an alternative causal inference approach which should be less susceptible to these biases. Methods and analysis: We will use two-sample MR, which uses two independent samples for the exposure and outcome data, to investigate previously reported observational associations of multiple potential preventive agents with CRC risk. We define preventive agents as any synthetic (e.g. approved medication) or natural (e.g. micronutrient, endogenous hormone) molecule used to reduce the risk of cancer. We will first extract potential preventive agents that have been previously linked to CRC risk in observational studies from reviews of the literature. We will then evaluate whether we can develop a genetic instrument for each preventive agent from previously published genome-wide association studies (GWASs) of direct measures of molecular traits (e.g. circulating levels of protein drug targets, blood-based biomarkers of dietary vitamins). The summary statistics from these GWASs, and a large GWAS of CRC, will be used in two-sample MR analyses to investigate the causal effect of putative preventive therapy agents on CRC risk. Sensitivity analyses will be conducted to evaluate the robustness of findings to potential violations of MR assumptions.
Colorectal cancer is the third most common cancer worldwide and the second most common cause of cancer-related death. An individual's chances of surviving the disease are increased if it is caught early or even prevented from developing in the first place. Currently, screening in the UK is offered to everyone over the age of 50 and whilst this can be effective in early cancer detection and secondary prevention, additional prevention strategies are needed to reduce cancer rates. Previous research has investigated whether intake of certain medications, dietary micronutrients or hormones can help prevent colorectal cancer development. There is some evidence to show that taking aspirin can reduce your risk of developing colorectal cancer, however, given potential adverse side effects to taking aspirin (e.g. gastrointestinal bleeding), this medication is not suitable for everyone. We wanted to assess whether other previously identified medications, micronutrients or hormones have any effect on reducing risk of cancer development. If we can identify a compound that could reduce an individual's risk of developing colorectal cancer, it could be used as an additional cancer prevention strategy. We curated a list of potential preventive compounds from previously conducted studies that used observational epidemiological (i.e. non-randomised) methods. Distinguishing statistical correlations from causal relationships when using observational methods can be difficult. This can be due to additional factors in the study affecting both the use of potential preventive compounds and an individual's risk of cancer development (e.g. those taking vitamin supplements having a healthier diet) or the observed relationship may be causal but in the opposite direction (e.g. a cancer diagnosis has a subsequent effect on dietary habits). We will use an alternative epidemiological method, called Mendelian randomization, which uses genetics to attempt to overcome this issue and enable us to determine if a specific compound is reducing cancer risk.
RESUMEN
BACKGROUND: Understanding the role of circulating proteins in prostate cancer risk can reveal key biological pathways and identify novel targets for cancer prevention. METHODS: We investigated the association of 2002 genetically predicted circulating protein levels with risk of prostate cancer overall, and of aggressive and early onset disease, using cis-pQTL Mendelian randomisation (MR) and colocalisation. Findings for proteins with support from both MR, after correction for multiple-testing, and colocalisation were replicated using two independent cancer GWAS, one of European and one of African ancestry. Proteins with evidence of prostate-specific tissue expression were additionally investigated using spatial transcriptomic data in prostate tumour tissue to assess their role in tumour aggressiveness. Finally, we mapped risk proteins to drug and ongoing clinical trials targets. FINDINGS: We identified 20 proteins genetically linked to prostate cancer risk (14 for overall [8 specific], 7 for aggressive [3 specific], and 8 for early onset disease [2 specific]), of which the majority replicated where data were available. Among these were proteins associated with aggressive disease, such as PPA2 [Odds Ratio (OR) per 1 SD increment = 2.13, 95% CI: 1.54-2.93], PYY [OR = 1.87, 95% CI: 1.43-2.44] and PRSS3 [OR = 0.80, 95% CI: 0.73-0.89], and those associated with early onset disease, including EHPB1 [OR = 2.89, 95% CI: 1.99-4.21], POGLUT3 [OR = 0.76, 95% CI: 0.67-0.86] and TPM3 [OR = 0.47, 95% CI: 0.34-0.64]. We confirmed an inverse association of MSMB with prostate cancer overall [OR = 0.81, 95% CI: 0.80-0.82], and also found an inverse association with both aggressive [OR = 0.84, 95% CI: 0.82-0.86] and early onset disease [OR = 0.71, 95% CI: 0.68-0.74]. Using spatial transcriptomics data, we identified MSMB as the genome-wide top-most predictive gene to distinguish benign regions from high grade cancer regions that comparatively had five-fold lower MSMB expression. Additionally, ten proteins that were associated with prostate cancer risk also mapped to existing therapeutic interventions. INTERPRETATION: Our findings emphasise the importance of proteomics for improving our understanding of prostate cancer aetiology and of opportunities for novel therapeutic interventions. Additionally, we demonstrate the added benefit of in-depth functional analyses to triangulate the role of risk proteins in the clinical aggressiveness of prostate tumours. Using these integrated methods, we identify a subset of risk proteins associated with aggressive and early onset disease as priorities for investigation for the future prevention and treatment of prostate cancer. FUNDING: This work was supported by Cancer Research UK (grant no. C8221/A29017).
Asunto(s)
Análisis de la Aleatorización Mendeliana , Neoplasias de la Próstata , Proteómica , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Factores de Riesgo , Proteómica/métodos , Estudio de Asociación del Genoma Completo , Biomarcadores de Tumor/genética , Transcriptoma , Predisposición Genética a la Enfermedad , Perfilación de la Expresión Génica , Polimorfismo de Nucleótido Simple , Oportunidad Relativa , Proteoma , Edad de InicioRESUMEN
BACKGROUND: Colorectal cancer (CRC) is the third-most-common cancer worldwide and its rates are increasing. Elevated body mass index (BMI) is an established risk factor for CRC, although the molecular mechanisms behind this association remain unclear. Using the Mendelian randomization (MR) framework, we aimed to investigate the mediating effects of putative biomarkers and other CRC risk factors in the association between BMI and CRC. METHODS: We selected as mediators biomarkers of established cancer-related mechanisms and other CRC risk factors for which a plausible association with obesity exists, such as inflammatory biomarkers, glucose homeostasis traits, lipids, adipokines, insulin-like growth factor 1 (IGF1), sex hormones, 25-hydroxy-vitamin D, smoking, physical activity (PA) and alcohol consumption. We used inverse-variance weighted MR in the main univariable analyses and performed sensitivity analyses (weighted-median, MR-Egger, Contamination Mixture). We used multivariable MR for the mediation analyses. RESULTS: Genetically predicted BMI was positively associated with CRC risk [odds ratio per SD (5 kg/m2) = 1.17, 95% CI: 1.08-1.24, P-value = 1.4 × 10-5] and robustly associated with nearly all potential mediators. Genetically predicted IGF1, fasting insulin, low-density lipoprotein cholesterol, smoking, PA and alcohol were associated with CRC risk. Evidence for attenuation was found for IGF1 [explained 7% (95% CI: 2-13%) of the association], smoking (31%, 4-57%) and PA (7%, 2-11%). There was little evidence for pleiotropy, although smoking was bidirectionally associated with BMI and instruments were weak for PA. CONCLUSIONS: The effect of BMI on CRC risk is possibly partly mediated through plasma IGF1, whereas the attenuation of the BMI-CRC association by smoking and PA may reflect confounding and shared underlying mechanisms rather than mediation.
Asunto(s)
Índice de Masa Corporal , Neoplasias Colorrectales , Análisis de la Aleatorización Mendeliana , Obesidad , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/epidemiología , Factores de Riesgo , Obesidad/genética , Obesidad/epidemiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Consumo de Bebidas Alcohólicas/epidemiologíaRESUMEN
Circulating proteins can reveal key pathways to cancer and identify therapeutic targets for cancer prevention. We investigate 2,074 circulating proteins and risk of nine common cancers (bladder, breast, endometrium, head and neck, lung, ovary, pancreas, kidney, and malignant non-melanoma) using cis protein Mendelian randomisation and colocalization. We conduct additional analyses to identify adverse side-effects of altering risk proteins and map cancer risk proteins to drug targets. Here we find 40 proteins associated with common cancers, such as PLAUR and risk of breast cancer [odds ratio per standard deviation increment: 2.27, 1.88-2.74], and with high-mortality cancers, such as CTRB1 and pancreatic cancer [0.79, 0.73-0.85]. We also identify potential adverse effects of protein-altering interventions to reduce cancer risk, such as hypertension. Additionally, we report 18 proteins associated with cancer risk that map to existing drugs and 15 that are not currently under clinical investigation. In sum, we identify protein-cancer links that improve our understanding of cancer aetiology. We also demonstrate that the wider consequence of any protein-altering intervention on well-being and morbidity is required to interpret any utility of proteins as potential future targets for therapeutic prevention.
Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Femenino , Factores de Riesgo , Análisis de la Aleatorización Mendeliana , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/sangre , Masculino , Proteínas Sanguíneas/metabolismoRESUMEN
Importance: The Cluster Randomized Trial of PSA Testing for Prostate Cancer (CAP) reported no effect of prostate-specific antigen (PSA) screening on prostate cancer mortality at a median 10-year follow-up (primary outcome), but the long-term effects of PSA screening on prostate cancer mortality remain unclear. Objective: To evaluate the effect of a single invitation for PSA screening on prostate cancer-specific mortality at a median 15-year follow-up compared with no invitation for screening. Design, Setting, and Participants: This secondary analysis of the CAP randomized clinical trial included men aged 50 to 69 years identified at 573 primary care practices in England and Wales. Primary care practices were randomized between September 25, 2001, and August 24, 2007, and men were enrolled between January 8, 2002, and January 20, 2009. Follow-up was completed on March 31, 2021. Intervention: Men received a single invitation for a PSA screening test with subsequent diagnostic tests if the PSA level was 3.0 ng/mL or higher. The control group received standard practice (no invitation). Main Outcomes and Measures: The primary outcome was reported previously. Of 8 prespecified secondary outcomes, results of 4 were reported previously. The 4 remaining prespecified secondary outcomes at 15-year follow-up were prostate cancer-specific mortality, all-cause mortality, and prostate cancer stage and Gleason grade at diagnosis. Results: Of 415â¯357 eligible men (mean [SD] age, 59.0 [5.6] years), 98% were included in these analyses. Overall, 12â¯013 and 12â¯958 men with a prostate cancer diagnosis were in the intervention and control groups, respectively (15-year cumulative risk, 7.08% [95% CI, 6.95%-7.21%] and 6.94% [95% CI, 6.82%-7.06%], respectively). At a median 15-year follow-up, 1199 men in the intervention group (0.69% [95% CI, 0.65%-0.73%]) and 1451 men in the control group (0.78% [95% CI, 0.73%-0.82%]) died of prostate cancer (rate ratio [RR], 0.92 [95% CI, 0.85-0.99]; P = .03). Compared with the control, the PSA screening intervention increased detection of low-grade (Gleason score [GS] ≤6: 2.2% vs 1.6%; P < .001) and localized (T1/T2: 3.6% vs 3.1%; P < .001) disease but not intermediate (GS of 7), high-grade (GS ≥8), locally advanced (T3), or distally advanced (T4/N1/M1) tumors. There were 45â¯084 all-cause deaths in the intervention group (23.2% [95% CI, 23.0%-23.4%]) and 50â¯336 deaths in the control group (23.3% [95% CI, 23.1%-23.5%]) (RR, 0.97 [95% CI, 0.94-1.01]; P = .11). Eight of the prostate cancer deaths in the intervention group (0.7%) and 7 deaths in the control group (0.5%) were related to a diagnostic biopsy or prostate cancer treatment. Conclusions and Relevance: In this secondary analysis of a randomized clinical trial, a single invitation for PSA screening compared with standard practice without routine screening reduced prostate cancer deaths at a median follow-up of 15 years. However, the absolute reduction in deaths was small. Trial Registration: isrctn.org Identifier: ISRCTN92187251.
Asunto(s)
Detección Precoz del Cáncer , Antígeno Prostático Específico , Neoplasias de la Próstata , Anciano , Humanos , Masculino , Persona de Mediana Edad , Detección Precoz del Cáncer/métodos , Detección Precoz del Cáncer/estadística & datos numéricos , Inglaterra/epidemiología , Estudios de Seguimiento , Tamizaje Masivo/métodos , Tamizaje Masivo/estadística & datos numéricos , Clasificación del Tumor , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/epidemiología , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/terapia , Gales/epidemiología , Ultrasonografía , Biopsia Guiada por ImagenRESUMEN
BACKGROUND: This article demonstrates a means of assessing long-term intervention cost-effectiveness in the absence of data from randomized controlled trials and without recourse to Markov simulation or similar types of cohort simulation. METHODS: Using a Mendelian randomization study design, we developed causal estimates of the genetically predicted effect of bladder, breast, colorectal, lung, multiple myeloma, ovarian, prostate, and thyroid cancers on health care costs and quality-adjusted life-years (QALYs) using outcome data drawn from the UK Biobank cohort. We then used these estimates in a simulation model to estimate the cost-effectiveness of a hypothetical population-wide preventative intervention based on a repurposed class of antidiabetic drugs known as sodium-glucose cotransporter-2 (SGLT2) inhibitors very recently shown to reduce the odds of incident prostate cancer. RESULTS: Genetic liability to prostate cancer and breast cancer had material causal impacts on either or both health care costs and QALYs. Mendelian randomization results for the less common cancers were associated with considerable uncertainty. SGLT2 inhibition was unlikely to be a cost-effective preventative intervention for prostate cancer, although this conclusion depended on the price at which these drugs would be offered for a novel anticancer indication. IMPLICATIONS: Our new causal estimates of cancer exposures on health economic outcomes may be used as inputs into decision-analytic models of cancer interventions such as screening programs or simulations of longer-term outcomes associated with therapies investigated in randomized controlled trials with short follow-ups. Our method allowed us to rapidly and efficiently estimate the cost-effectiveness of a hypothetical population-scale anticancer intervention to inform and complement other means of assessing long-term intervention value. HIGHLIGHTS: The article demonstrates a novel method of assessing long-term intervention cost-effectiveness without relying on randomized controlled trials or cohort simulations.Mendelian randomization was used to estimate the causal effects of certain cancers on health care costs and quality-adjusted life-years (QALYs) using data from the UK Biobank cohort.Given causal data on the association of different cancer exposures on costs and QALYs, it was possible to simulate the cost-effectiveness of an anticancer intervention.Genetic liability to prostate cancer and breast cancer significantly affected health care costs and QALYs, but the hypothetical intervention using SGLT2 inhibitors for prostate cancer may not be cost-effective, depending on the drug's price for the new anticancer indication. The methods we propose and implement can be used to efficiently estimate intervention cost-effectiveness and to inform decision making in all manner of preventative and therapeutic contexts.
Asunto(s)
Neoplasias de la Mama , Neoplasias de la Próstata , Masculino , Humanos , Análisis Costo-Beneficio , Transportador 2 de Sodio-Glucosa , Neoplasias de la Próstata/genética , Hipoglucemiantes , Neoplasias de la Mama/genética , Años de Vida Ajustados por Calidad de VidaRESUMEN
INTRODUCTION: Compared with the traditional drug development pathway, investigating alternative uses for existing drugs (ie, drug repurposing) requires substantially less time, cost and resources. Immune checkpoint inhibitors are licensed for the treatment of certain breast, colorectal, head and neck, lung and melanoma cancers. These drugs target immune checkpoint proteins to reduce the suppression of T cell activation by cancer cells. As T cell suppression is a hallmark of cancer common across anatomical sites, we hypothesise that immune checkpoint inhibitors could be repurposed for the treatment of additional cancers beyond the ones already indicated. METHODS AND ANALYSIS: We will use two-sample Mendelian randomisation to investigate the effect of genetically proxied levels of protein targets of two immune checkpoint inhibitors-programmed cell death protein 1 and programmed death ligand 1-on survival of seven cancer types (breast, colorectal, head and neck, lung, melanoma, ovarian and prostate). Summary genetic association data will be obtained from prior genome-wide association studies of circulating protein levels and cancer survival in populations of European ancestry. Various sensitivity analyses will be performed to examine the robustness of findings to potential violations of Mendelian randomisation assumptions, collider bias and the impact of alternative genetic instrument construction strategies. The impact of treatment history and tumour stage on the findings will also be investigated using summary-level and individual-level genetic data where available. ETHICS AND DISSEMINATION: No separate ethics approval will be required for these analyses as we will be using data from previously published genome-wide association studies which individually gained ethical approval and participant consent. Results from analyses will be submitted as an open-access peer-reviewed publication and statistical code will be made freely available on the completion of the analysis.
Asunto(s)
Neoplasias Colorrectales , Melanoma , Masculino , Humanos , Melanoma/genética , Proteínas de Punto de Control Inmunitario/genética , Inhibidores de Puntos de Control Inmunológico , Estudio de Asociación del Genoma Completo , Neoplasias Colorrectales/genética , Análisis de la Aleatorización Mendeliana/métodosRESUMEN
BACKGROUND: Obesity has been positively associated with most molecular subtypes of colorectal cancer (CRC); however, the magnitude and the causality of these associations is uncertain. METHODS: We used Mendelian randomization (MR) to examine potential causal relationships between body size traits (body mass index [BMI], waist circumference, and body fat percentage) with risks of Jass classification types and individual subtypes of CRC (microsatellite instability [MSI] status, CpG island methylator phenotype [CIMP] status, BRAF and KRAS mutations). Summary data on tumour markers were obtained from two genetic consortia (CCFR, GECCO). FINDINGS: A 1-standard deviation (SD:5.1 kg/m2) increment in BMI levels was found to increase risks of Jass type 1MSI-high,CIMP-high,BRAF-mutated,KRAS-wildtype (odds ratio [OR]: 2.14, 95% confidence interval [CI]: 1.46, 3.13; p-value = 9 × 10-5) and Jass type 2non-MSI-high,CIMP-high,BRAF-mutated,KRAS-wildtype CRC (OR: 2.20, 95% CI: 1.26, 3.86; p-value = 0.005). The magnitude of these associations was stronger compared with Jass type 4non-MSI-high,CIMP-low/negative,BRAF-wildtype,KRAS-wildtype CRC (p-differences: 0.03 and 0.04, respectively). A 1-SD (SD:13.4 cm) increment in waist circumference increased risk of Jass type 3non-MSI-high,CIMP-low/negative,BRAF-wildtype,KRAS-mutated (OR 1.73, 95% CI: 1.34, 2.25; p-value = 9 × 10-5) that was stronger compared with Jass type 4 CRC (p-difference: 0.03). A higher body fat percentage (SD:8.5%) increased risk of Jass type 1 CRC (OR: 2.59, 95% CI: 1.49, 4.48; p-value = 0.001), which was greater than Jass type 4 CRC (p-difference: 0.03). INTERPRETATION: Body size was more strongly linked to the serrated (Jass types 1 and 2) and alternate (Jass type 3) pathways of colorectal carcinogenesis in comparison to the traditional pathway (Jass type 4). FUNDING: Cancer Research UK, National Institute for Health Research, Medical Research Council, National Institutes of Health, National Cancer Institute, American Institute for Cancer Research, Brigham and Women's Hospital, Prevent Cancer Foundation, Victorian Cancer Agency, Swedish Research Council, Swedish Cancer Society, Region Västerbotten, Knut and Alice Wallenberg Foundation, Lion's Cancer Research Foundation, Insamlingsstiftelsen, Umeå University. Full funding details are provided in acknowledgements.
Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas B-raf , Humanos , Femenino , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Análisis de la Aleatorización Mendeliana , Metilación de ADN , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Inestabilidad de Microsatélites , Mutación , Fenotipo , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Tamaño Corporal , Islas de CpGRESUMEN
BACKGROUND: Tumour-promoting inflammation is a "hallmark" of cancer and conventional epidemiological studies have reported links between various inflammatory markers and cancer risk. The causal nature of these relationships and, thus, the suitability of these markers as intervention targets for cancer prevention is unclear. METHODS: We meta-analysed 6 genome-wide association studies of circulating inflammatory markers comprising 59,969 participants of European ancestry. We then used combined cis-Mendelian randomization and colocalisation analysis to evaluate the causal role of 66 circulating inflammatory markers in risk of 30 adult cancers in 338,294 cancer cases and up to 1,238,345 controls. Genetic instruments for inflammatory markers were constructed using genome-wide significant (P < 5.0 × 10-8) cis-acting SNPs (i.e., in or ±250 kb from the gene encoding the relevant protein) in weak linkage disequilibrium (LD, r2 < 0.10). Effect estimates were generated using inverse-variance weighted random-effects models and standard errors were inflated to account for weak LD between variants with reference to the 1000 Genomes Phase 3 CEU panel. A false discovery rate (FDR)-corrected P-value ("q-value") <0.05 was used as a threshold to define "strong evidence" to support associations and 0.05 ≤ q-value < 0.20 to define "suggestive evidence". A colocalisation posterior probability (PPH4) >70% was employed to indicate support for shared causal variants across inflammatory markers and cancer outcomes. Findings were replicated in the FinnGen study and then pooled using meta-analysis. FINDINGS: We found strong evidence to support an association of genetically-proxied circulating pro-adrenomedullin concentrations with increased breast cancer risk (OR: 1.19, 95% CI: 1.10-1.29, q-value = 0.033, PPH4 = 84.3%) and suggestive evidence to support associations of interleukin-23 receptor concentrations with increased pancreatic cancer risk (OR: 1.42, 95% CI: 1.20-1.69, q-value = 0.055, PPH4 = 73.9%), prothrombin concentrations with decreased basal cell carcinoma risk (OR: 0.66, 95% CI: 0.53-0.81, q-value = 0.067, PPH4 = 81.8%), and interleukin-1 receptor-like 1 concentrations with decreased triple-negative breast cancer risk (OR: 0.92, 95% CI: 0.88-0.97, q-value = 0.15, PPH4 = 85.6%). These findings were replicated in pooled analyses with the FinnGen study. Though suggestive evidence was found to support an association of macrophage migration inhibitory factor concentrations with increased bladder cancer risk (OR: 2.46, 95% CI: 1.48-4.10, q-value = 0.072, PPH4 = 76.1%), this finding was not replicated when pooled with the FinnGen study. For 22 of 30 cancer outcomes examined, there was little evidence (q-value ≥0.20) that any of the 66 circulating inflammatory markers examined were associated with cancer risk. INTERPRETATION: Our comprehensive joint Mendelian randomization and colocalisation analysis of the role of circulating inflammatory markers in cancer risk identified potential roles for 4 circulating inflammatory markers in risk of 4 site-specific cancers. Contrary to reports from some prior conventional epidemiological studies, we found little evidence of association of circulating inflammatory markers with the majority of site-specific cancers evaluated. FUNDING: Cancer Research UK (C68933/A28534, C18281/A29019, PPRCPJT∖100005), World Cancer Research Fund (IIG_FULL_2020_022), National Institute for Health Research (NIHR202411, BRC-1215-20011), Medical Research Council (MC_UU_00011/1, MC_UU_00011/3, MC_UU_00011/6, and MC_UU_00011/4), Academy of Finland Project 326291, European Union's Horizon 2020 grant agreement no. 848158 (EarlyCause), French National Cancer Institute (INCa SHSESP20, 2020-076), Versus Arthritis (21173, 21754, 21755), National Institutes of Health (U19 CA203654), National Cancer Institute (U19CA203654).
Asunto(s)
Estudio de Asociación del Genoma Completo , Neoplasias , Adulto , Humanos , Análisis de la Aleatorización Mendeliana , Riesgo , Neoplasias/epidemiología , Neoplasias/genética , Inflamación/genética , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: Some modifiable risk factors for cancer originate during adolescence. While there is evidence indicating relationships between adverse childhood experiences and health risk behaviours generally, little is known about how childhood adversity influences the engagement of adolescents in cancer risk behaviours. This study aimed to determine the relationship between adverse childhood experiences and adolescent cancer risk behaviours. METHODS: Data were collected prospectively from birth to age 18 years on children born to mothers enrolled into the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort study. Multivariable linear regression models assessed relationships of a composite exposure measure comprised of adverse childhood experiences (total number of childhood adversities experienced from early infancy until age 9 years) with multiple cancer risk behaviours. The latter was expressed as a single continuous score for tobacco smoking, alcohol consumption, obesity, unsafe sex, and physical inactivity, at ages 11, 14, 16 and 18 years. Analysis was carried out on the complete case and imputation samples of 1,368 and 7,358 participants respectively. RESULTS: All adolescent cancer risk behaviours increased in prevalence as the adolescents grew older, except for obesity. Each additional adverse childhood experience was associated with a 0.25 unit increase in adolescent cancer risk behaviour (95% CI 0.16-0.34; p < 0.001). Individually, parental substance misuse (ß 0.64, 95% CI 0.25-1.03, p < 0.001) and parental separation (ß 0.56, 95% CI 0.27-0.86, p < 0.001) demonstrated the strongest evidence of association with engagement in adolescent cancer risk behaviour. CONCLUSION: Childhood adversity was associated with a greater degree of engagement in adolescent cancer risk behaviours. This finding demonstrates the need for targeted primary and secondary prevention interventions that reduce engagement across multiple cancer risk behaviours for children and adolescents who have experienced adversity in childhood, such as parental substance misuse and separation, and reduce exposure to adversity.
Asunto(s)
Experiencias Adversas de la Infancia , Neoplasias , Trastornos Relacionados con Sustancias , Niño , Adolescente , Humanos , Estudios de Cohortes , Estudios Longitudinales , Obesidad , Trastornos Relacionados con Sustancias/epidemiología , Asunción de Riesgos , Neoplasias/epidemiología , Neoplasias/etiologíaRESUMEN
BACKGROUND: Sedentary behaviours have been associated with increased risks of some common cancers in epidemiological studies; however, it is unclear if these associations are causal. METHODS: We used univariable and multivariable two-sample Mendelian randomisation (MR) to examine potential causal relationships between sedentary behaviours and risks of breast, colorectal and prostate cancer. Genetic variants associated with self-reported leisure television watching and computer use were identified from a recent genome-wide association study (GWAS). Data related to cancer risk were obtained from cancer GWAS consortia. A series of sensitivity analyses were applied to examine the robustness of the results to the presence of confounding. RESULTS: A 1-standard deviation (SD: 1.5 h/day) increment in hours of television watching increased risk of breast cancer (OR per 1-SD: 1.15, 95% confidence interval [CI]: 1.05-1.26) and colorectal cancer (OR per 1-SD: 1.32, 95% CI: 1.16-1.49) while there was little evidence of an association for prostate cancer risk (OR per 1-SD: 0.94, 95% CI: 0.84-1.06). After adjusting for years of education, the effect estimates for television watching were attenuated (breast cancer, OR per 1-SD: 1.08, 95% CI: 0.92-1.27; colorectal cancer, OR per 1-SD: 1.08, 95% CI: 0.90-1.31). Post hoc analyses showed that years of education might have a possible confounding and mediating role in the association between television watching with breast and colorectal cancer. Consistent results were observed for each cancer site according to sex (colorectal cancer), anatomical subsites and cancer subtypes. There was little evidence of associations between genetically predicted computer use and cancer risk. CONCLUSIONS: Our univariable analysis identified some positive associations between hours of television watching and risks of breast and colorectal cancer. However, further adjustment for additional lifestyle factors especially years of education attenuated these results. Future studies using objective measures of exposure can provide new insights into the possible role of sedentary behaviour in cancer development.
Asunto(s)
Neoplasias de la Mama , Neoplasias Colorrectales , Análisis de la Aleatorización Mendeliana , Neoplasias de la Próstata , Conducta Sedentaria , Televisión , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/epidemiología , Neoplasias de la Próstata/etiología , Televisión/estadística & datos numéricos , Neoplasias de la Mama/genética , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/etiología , Femenino , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/etiología , Computadores/estadística & datos numéricos , Estudio de Asociación del Genoma Completo , Actividades Recreativas , Factores de RiesgoRESUMEN
The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias de la Próstata , Humanos , Masculino , Población Negra/genética , Estudio de Asociación del Genoma Completo , Hispánicos o Latinos/genética , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/genética , Factores de Riesgo , Población Blanca/genética , Pueblo Asiatico/genéticaRESUMEN
Background: Understanding the role of circulating proteins in prostate cancer risk can reveal key biological pathways and identify novel targets for cancer prevention. Methods: We investigated the association of 2,002 genetically predicted circulating protein levels with risk of prostate cancer overall, and of aggressive and early onset disease, using cis-pQTL Mendelian randomization (MR) and colocalization. Findings for proteins with support from both MR, after correction for multiple-testing, and colocalization were replicated using two independent cancer GWAS, one of European and one of African ancestry. Proteins with evidence of prostate-specific tissue expression were additionally investigated using spatial transcriptomic data in prostate tumor tissue to assess their role in tumor aggressiveness. Finally, we mapped risk proteins to drug and ongoing clinical trials targets. Results: We identified 20 proteins genetically linked to prostate cancer risk (14 for overall [8 specific], 7 for aggressive [3 specific], and 8 for early onset disease [2 specific]), of which a majority were novel and replicated. Among these were proteins associated with aggressive disease, such as PPA2 [Odds Ratio (OR) per 1 SD increment = 2.13, 95% CI: 1.54-2.93], PYY [OR = 1.87, 95% CI: 1.43-2.44] and PRSS3 [OR = 0.80, 95% CI: 0.73-0.89], and those associated with early onset disease, including EHPB1 [OR = 2.89, 95% CI: 1.99-4.21], POGLUT3 [OR = 0.76, 95% CI: 0.67-0.86] and TPM3 [OR = 0.47, 95% CI: 0.34-0.64]. We confirm an inverse association of MSMB with prostate cancer overall [OR = 0.81, 95% CI: 0.80-0.82], and also find an inverse association with both aggressive [OR = 0.84, 95% CI: 0.82-0.86] and early onset disease [OR = 0.71, 95% CI: 0.68-0.74]. Using spatial transcriptomics data, we identified MSMB as the genome-wide top-most predictive gene to distinguish benign regions from high grade cancer regions that had five-fold lower MSMB expression. Additionally, ten proteins that were associated with prostate cancer risk mapped to existing therapeutic interventions. Conclusion: Our findings emphasize the importance of proteomics for improving our understanding of prostate cancer etiology and of opportunities for novel therapeutic interventions. Additionally, we demonstrate the added benefit of in-depth functional analyses to triangulate the role of risk proteins in the clinical aggressiveness of prostate tumors. Using these integrated methods, we identify a subset of risk proteins associated with aggressive and early onset disease as priorities for investigation for the future prevention and treatment of prostate cancer.
RESUMEN
BACKGROUND: We evaluated the temporal association between kidney function, assessed by estimated glomerular filtration rate (eGFR), and the risk of incident renal cell carcinoma (RCC). We also evaluated whether eGFR could improve RCC risk discrimination beyond established risk factors. METHODS: We analyzed the UK Biobank cohort, including 463,178 participants of whom 1,447 were diagnosed with RCC during 5,696,963 person-years of follow-up. We evaluated the temporal association between eGFR and RCC risk using flexible parametric survival models, adjusted for C-reactive protein and RCC risk factors. eGFR was calculated from creatinine and cystatin C levels. RESULTS: Lower eGFR, an indication of poor kidney function, was associated with higher RCC risk when measured up to 5 years prior to diagnosis. The RCC HR per SD decrease in eGFR when measured 1 year before diagnosis was 1.26 [95% confidence interval (95% CI), 1.16-1.37], and 1.11 (95% CI, 1.05-1.17) when measured 5 years before diagnosis. Adding eGFR to the RCC risk model provided a small improvement in risk discrimination 1 year before diagnosis with an AUC of 0.73 (95% CI, 0.67-0.84) compared with the published model (0.69; 95% CI, 0.63-0.79). CONCLUSIONS: This study demonstrated that kidney function markers are associated with RCC risk, but the nature of these associations are consistent with reversed causality. Markers of kidney function provided limited improvements in RCC risk discrimination beyond established risk factors. IMPACT: eGFR may be of potential use to identify individuals in the extremes of the risk distribution.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Insuficiencia Renal Crónica , Humanos , Carcinoma de Células Renales/epidemiología , Tasa de Filtración Glomerular/fisiología , Riñón , Factores de Riesgo , Neoplasias Renales/epidemiología , Creatinina , Insuficiencia Renal Crónica/complicacionesRESUMEN
PURPOSE OF REVIEW: Many studies on epidemiology of prostate cancer (PCa) are based on a diagnosis of PCa using PSA (prostate-specific antigen) level. However, biases can distort the interpretation of the results, which in turn limits policy and decision making on public health prevention strategies or clinical guidelines. The main confusion is to interpret the posterior probability of the outcome following the exposure as a change in the prevalence of the disease outcome, whereas this change reflects only the predictive values of the PSA test induced by the exposure of interest. RECENT FINDINGS: Many studies report potential causal factors involved in PCa risk. However, the lack of integration of how physiological changes in PSA values are associated with the exposures being investigated, they explain in part contradictory and controversial results on PCa risk factors in the literature. SUMMARY: A strategy to perform case--control studies based on PSA stratification is suggested to avoid misinterpretation related to PSA misclassification. Real data are analysed, and we show that we can exploit the mechanism of selection biases using different modalities of controls recruitment based on biomarker stratification to distinguish real from false causal factors.
Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/epidemiología , Neoplasias de la Próstata/prevención & control , Factores de Riesgo , Estudios EpidemiológicosRESUMEN
BACKGROUND: The associations of adiposity with aggressive prostate cancer risk are unclear. Using two-sample Mendelian randomization, we assessed the association of metabolically unfavourable adiposity (UFA), favourable adiposity (FA) and for comparison body mass index (BMI), with prostate cancer, including aggressive prostate cancer. METHODS: We examined the association of these genetically predicted adiposity-related traits with risk of prostate cancer overall, aggressive and early onset disease using outcome summary statistics from the PRACTICAL consortium (including 15,167 aggressive cases). RESULTS: In inverse-variance weighted models, there was little evidence that genetically predicted one standard deviation higher UFA, FA and BMI were associated with aggressive prostate cancer [OR: 0.85 (95% CI:0.61-1.19), 0.80 (0.53-1.23) and 0.97 (0.88-1.08), respectively]; these associations were largely consistent in sensitivity analyses accounting for horizontal pleiotropy. There was no strong evidence that genetically determined UFA, FA or BMI were associated with overall prostate cancer or early age of onset prostate cancer. CONCLUSIONS: We did not find differences in the associations of UFA and FA with prostate cancer risk, which suggest that adiposity is unlikely to influence prostate cancer via the metabolic factors assessed; however, these did not cover some aspects related to metabolic health that may link obesity with aggressive prostate cancer, which should be explored in future studies.
Asunto(s)
Adiposidad , Neoplasias de la Próstata , Masculino , Humanos , Adiposidad/genética , Predisposición Genética a la Enfermedad , Análisis de la Aleatorización Mendeliana , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/genética , Índice de Masa Corporal , Neoplasias de la Próstata/epidemiología , Neoplasias de la Próstata/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: Screening men for prostate cancer using prostate-specific antigen (PSA) testing remains controversial. We aimed to estimate the likely budgetary impact on secondary care in England and Wales to inform screening decision makers. METHODS: The Cluster randomised triAl of PSA testing for Prostate cancer study (CAP) compared a single invitation to men aged 50-69 for a PSA test with usual care (no screening). Routinely collected hospital care data were obtained for all men in CAP, and NHS reference costs were mapped to each event via Healthcare Resource Group (HRG) codes. Secondary-care costs per man per year were calculated, and cost differences (and population-level estimates) between arms were derived annually for the first five years following randomisation. RESULTS: In the first year post-randomisation, secondary-care costs averaged across all men (irrespective of a prostate cancer diagnosis) in the intervention arm (n = 189279) were £44.80 (95% confidence interval: £18.30-£71.30) higher than for men in the control arm (n = 219357). Extrapolated to a population level, the introduction of a single PSA screening invitation could lead to additional secondary care costs of £314 million. CONCLUSIONS: Introducing a single PSA screening test for men aged 50-69 across England and Wales could lead to very high initial secondary-care costs.